SlideShare a Scribd company logo
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Vibration of Continuous
Structures
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Course Contents
 SDOF
 M-DOF
• Cables/String
• Bars
• Shafts
• Vibration Attenuation
• Beams
• FEM for Vibration
• Plates
• Aeroelasticity
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Derive the equation of motion for Cable/
String
• Estimate the Natural Frequencies
• Understand the concept of mode shapes
• Apply BC’s and IC’s to obtain structure
response
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
String and Cables
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Derive the equation of motion for
Cable/String
• Estimate the Natural Frequencies
• Understand the concept of mode shapes
• Apply BC’s and IC’s to obtain structure
response
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Strings and Cables
• This type of structures does not bare any
bending or compression loads
• It resists deformations only by inducing
tension stress
• Examples are the strings of musical
instruments, cables of bridges, and
elevator suspension cables
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
The string/cable equation
• Start by considering a
uniform string
stretched between two
fixed boundaries
• Assume constant,
axial tension t in string
• Let a distributed force
f(x,t) act along the
string
f(x,t)
t
x
y
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Examine a small element of
string
xtxf
t
txw
xFy


),(sinsin
),(
2211
2
2
tt



• Where  is the mass per unit length of the cable
• Force balance on an infinitesimal element
• Now linearize the sine with the small angle
approximate sin(x) = tan(x) = slope of the string
1
2
t2
t1
x1 x2 = x1 +x
w(x,t)
f (x,t)
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com


















)(
:about/ofseriesTaylortheRecall
2
1
112
xO
x
w
x
x
x
w
x
w
xxw
xxx


t




t


t
t
x
t
txw
xtxf
x
txw
x
txw
xx












2
2
),(
),(
),(),(
12





t


t
2
2
),(
),(
),(
t
txw
txf
x
txw
x 




t








x
t
txw
xtxfx
x
txw
x x






2
2
),(
),(
),(
1





t


Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
0,0),(),0(
0at)()0,(),()0,(
,
),(),(
00
2
2
22
2
��


ttwtw
txwxwxwxw
c
x
txw
tc
txw
t



t




Since t is constant, and for no external force the equation
of motion becomes:
Second order in time and second order in space, therefore
4 constants of integration. Two from initial conditions:
And two from boundary conditions:
, wave speed
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Physical quantities
• Deflection is w(x,t) in the y-direction
• The slope of the string is wx(x,t)
• The restoring force is twxx(x,t)
• The velocity is wt(x,t)
• The acceleration is wtt(x,t) at any point x
along the string at time t
Note that the above applies to cables as well as strings
Subscript denotes differentiation w.r.t. to that parameter
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Derive the equation of motion for
Cable/String
• Estimate the Natural Frequencies
• Understand the concept of mode shapes
• Apply BC’s and IC’s to obtain structure
response
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Modes and Natural Frequencies
   
2
2
2
2
2
2
2
2
2
)(
)(
)(
)(
0
)(
)(
,
)(
)(
)(
)(
=and=where)()()()(
)()(),(










 






tTc
tT
xX
xX
xX
xX
dx
d
tTc
tT
xX
xX
dt
d
dx
d
tTxXtTxXc
tTxXtxw



Solve by the method of separation of variables:
Substitute into the equation of motion to get:
Results in two second order equations
coupled only by a constant:
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solving the spatial equation:

 









n
aX
aX
XX
tTXtTX
aaxaxaxX
xXxX
n 









equationsticcharacteri
1
2
2121
2
0sin
0sin)(
0)0(
,0)(,0)0(
0)()(,0)()0(
nintegratioofconstantsareand,cossin)(
0)()(
Since T(t) is not zero
an infinite number of values of 
A second order equation with solution of the form:
Next apply the boundary conditions:
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
The temporal solution








1
22
)sin()cos()sin()sin(),(
)sin()cos()sin()sin(
sincossinsin),(
)conditionsinitialfrom(getnintegratioofconstantsare,
cossin)(
3,2,1,0)()(
n
nn
nn
nnnnnnn
nn
nnnnn
nnn
x
n
ct
n
dx
n
ct
n
ctxw
x
n
ct
n
dx
n
ct
n
c
xctdxctctxw
BA
ctBctAtT
ntTctT








Again a second order ode with solution of the form:
Substitution back into the separated form X(x)T(t) yields:
The total solution becomes:
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Using orthogonality to evaluate the remaining
constants from the initial conditions






















010
0
1
0
2
0
)sin()sin()sin()(
)0cos()sin()()0,(
:conditionsinitialtheFrom
2,0
,
)sin()sin(
dxx
m
x
n
ddxx
m
xw
x
n
dxwxw
mn
mn
dxx
m
x
n
n
n
n
n
nm




Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com












3,2,1,)sin()(
2
)0cos()sin(c)(
3,2,1,)sin()(
2
3,2,1,)sin()(
2
0
0
1
0
0
0
0
0











ndxx
n
xw
cn
c
x
n
cxw
ndxx
n
xwd
nm
mdxx
m
xwd
n
n
nn
n
m






Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Derive the equation of motion for
Cables/Strings
• Estimate the Natural Frequencies
• Understand the concept of mode shapes
• Apply BC’s and IC’s to obtain structure
response
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
A mode shape












t
c
xtxw
d
ndxx
n
xd
ncxw
nxxw
Assume
n
n









cos)sin(),(
1
3,2,0)sin()sin(
2
,0,0)(
1)=(ioneigenfunctfirsttheiswhich,sin)(
1
0
0
0
Causes vibration in the first mode
shape
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Plots of mode shapes
0 0.5 1 1.5 2
1
0.5
0.5
1
X ,1 x
X ,2 x
X ,3 x
x
sin
n
2
x




nodes
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
String mode shapes Video 1
String mode shapes Video 2
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example :Piano wire:
L=1.4 m, t=11.1x104 N, m=110 g.
Compute the first natural frequency.
  110 g per 1.4 m = 0.0786 kg/m
1 
c
l


1.4
t



1.4
11.1104
N
0.0786 kg/m
 2666.69 rad/s or 424 Hz
Dynamics of Continuous Structures
Maged Mostafa
#WikiCourses
http://WikiCourses.WikiSpaces.com
Assignment
1. Solve the cable problem with one side
fixed and the other supported by a flexible
support with stiffness k N/m
2. Solve the cable problem for a cable that
is hanging from one end and the tension
is changing due to the weight  N/m

More Related Content

03 Vibration of string

  • 1. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Vibration of Continuous Structures
  • 2. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Course Contents  SDOF  M-DOF • Cables/String • Bars • Shafts • Vibration Attenuation • Beams • FEM for Vibration • Plates • Aeroelasticity
  • 3. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Derive the equation of motion for Cable/ String • Estimate the Natural Frequencies • Understand the concept of mode shapes • Apply BC’s and IC’s to obtain structure response
  • 4. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com String and Cables
  • 5. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Derive the equation of motion for Cable/String • Estimate the Natural Frequencies • Understand the concept of mode shapes • Apply BC’s and IC’s to obtain structure response
  • 6. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Strings and Cables • This type of structures does not bare any bending or compression loads • It resists deformations only by inducing tension stress • Examples are the strings of musical instruments, cables of bridges, and elevator suspension cables
  • 7. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com The string/cable equation • Start by considering a uniform string stretched between two fixed boundaries • Assume constant, axial tension t in string • Let a distributed force f(x,t) act along the string f(x,t) t x y
  • 8. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Examine a small element of string xtxf t txw xFy   ),(sinsin ),( 2211 2 2 tt    • Where  is the mass per unit length of the cable • Force balance on an infinitesimal element • Now linearize the sine with the small angle approximate sin(x) = tan(x) = slope of the string 1 2 t2 t1 x1 x2 = x1 +x w(x,t) f (x,t)
  • 9. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com                   )( :about/ofseriesTaylortheRecall 2 1 112 xO x w x x x w x w xxw xxx   t     t   t t x t txw xtxf x txw x txw xx             2 2 ),( ),( ),(),( 12      t   t 2 2 ),( ),( ),( t txw txf x txw x      t         x t txw xtxfx x txw x x       2 2 ),( ),( ),( 1      t  
  • 10. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com 0,0),(),0( 0at)()0,(),()0,( , ),(),( 00 2 2 22 2    ttwtw txwxwxwxw c x txw tc txw t    t     Since t is constant, and for no external force the equation of motion becomes: Second order in time and second order in space, therefore 4 constants of integration. Two from initial conditions: And two from boundary conditions: , wave speed
  • 11. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Physical quantities • Deflection is w(x,t) in the y-direction • The slope of the string is wx(x,t) • The restoring force is twxx(x,t) • The velocity is wt(x,t) • The acceleration is wtt(x,t) at any point x along the string at time t Note that the above applies to cables as well as strings Subscript denotes differentiation w.r.t. to that parameter
  • 12. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Derive the equation of motion for Cable/String • Estimate the Natural Frequencies • Understand the concept of mode shapes • Apply BC’s and IC’s to obtain structure response
  • 13. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Modes and Natural Frequencies     2 2 2 2 2 2 2 2 2 )( )( )( )( 0 )( )( , )( )( )( )( =and=where)()()()( )()(),(                   tTc tT xX xX xX xX dx d tTc tT xX xX dt d dx d tTxXtTxXc tTxXtxw    Solve by the method of separation of variables: Substitute into the equation of motion to get: Results in two second order equations coupled only by a constant:
  • 14. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Solving the spatial equation:             n aX aX XX tTXtTX aaxaxaxX xXxX n           equationsticcharacteri 1 2 2121 2 0sin 0sin)( 0)0( ,0)(,0)0( 0)()(,0)()0( nintegratioofconstantsareand,cossin)( 0)()( Since T(t) is not zero an infinite number of values of  A second order equation with solution of the form: Next apply the boundary conditions:
  • 15. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com The temporal solution         1 22 )sin()cos()sin()sin(),( )sin()cos()sin()sin( sincossinsin),( )conditionsinitialfrom(getnintegratioofconstantsare, cossin)( 3,2,1,0)()( n nn nn nnnnnnn nn nnnnn nnn x n ct n dx n ct n ctxw x n ct n dx n ct n c xctdxctctxw BA ctBctAtT ntTctT         Again a second order ode with solution of the form: Substitution back into the separated form X(x)T(t) yields: The total solution becomes:
  • 16. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Using orthogonality to evaluate the remaining constants from the initial conditions                       010 0 1 0 2 0 )sin()sin()sin()( )0cos()sin()()0,( :conditionsinitialtheFrom 2,0 , )sin()sin( dxx m x n ddxx m xw x n dxwxw mn mn dxx m x n n n n n nm    
  • 17. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com             3,2,1,)sin()( 2 )0cos()sin(c)( 3,2,1,)sin()( 2 3,2,1,)sin()( 2 0 0 1 0 0 0 0 0            ndxx n xw cn c x n cxw ndxx n xwd nm mdxx m xwd n n nn n m      
  • 18. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Derive the equation of motion for Cables/Strings • Estimate the Natural Frequencies • Understand the concept of mode shapes • Apply BC’s and IC’s to obtain structure response
  • 19. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com A mode shape             t c xtxw d ndxx n xd ncxw nxxw Assume n n          cos)sin(),( 1 3,2,0)sin()sin( 2 ,0,0)( 1)=(ioneigenfunctfirsttheiswhich,sin)( 1 0 0 0 Causes vibration in the first mode shape
  • 20. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Plots of mode shapes 0 0.5 1 1.5 2 1 0.5 0.5 1 X ,1 x X ,2 x X ,3 x x sin n 2 x     nodes
  • 21. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com String mode shapes Video 1 String mode shapes Video 2
  • 22. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Example :Piano wire: L=1.4 m, t=11.1x104 N, m=110 g. Compute the first natural frequency.   110 g per 1.4 m = 0.0786 kg/m 1  c l   1.4 t    1.4 11.1104 N 0.0786 kg/m  2666.69 rad/s or 424 Hz
  • 23. Dynamics of Continuous Structures Maged Mostafa #WikiCourses http://WikiCourses.WikiSpaces.com Assignment 1. Solve the cable problem with one side fixed and the other supported by a flexible support with stiffness k N/m 2. Solve the cable problem for a cable that is hanging from one end and the tension is changing due to the weight  N/m