Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A deconstruction–reconstruction strategy for pyrimidine diversification

Abstract

Structure–activity relationship (SAR) studies are fundamental to drug and agrochemical development, yet only a few synthetic strategies apply to the nitrogen heteroaromatics frequently encountered in small molecule candidates1,2,3. Here we present an alternative approach in which we convert pyrimidine-containing compounds into various other nitrogen heteroaromatics. Transforming pyrimidines into their corresponding N-arylpyrimidinium salts enables cleavage into a three-carbon iminoenamine building block, used for various heterocycle-forming reactions. This deconstruction–reconstruction sequence diversifies the initial pyrimidine core and enables access to various heterocycles, such as azoles4. In effect, this approach allows heterocycle formation on complex molecules, resulting in analogues that would be challenging to obtain by other methods. We anticipate that this deconstruction–reconstruction strategy will extend to other heterocycle classes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Traditional de novo heterocycle synthesis and a deconstruction–reconstruction approach for heterocycle diversification.
Fig. 2: Scope of pyrimidinium salts, 2-substituted pyrimidines and 1,2-azoles.
Fig. 3: Applications of the pyrimidine diversification strategy to biologically active molecules and further reaction development.
Fig. 4: Pyrimidine to pyridine conversions through deconstruction–reconstruction.
Fig. 5: Computational studies of pyrimidine ring-opening.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information.

References

  1. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, L. & Ritter, T. A perspective on late-stage aromatic C–H bond functionalization. J. Am. Chem. Soc. 144, 2399–2414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Josephitis, C. M., Nguyen, H. M. H. & McNally, A. Late-stage C–H functionalization of azines. Chem. Rev. 123, 7655–7691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Joule, J. A. & Mills, K. Heterocyclic Chemistry 5th edn (Wiley, 2009).

  6. Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 9, 2265–2319 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Bhutani, P. et al. U.S. FDA approved drugs from 2015–June 2020: a perspective. J. Med. Chem. 64, 2339–2381 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Nadar, S. & Khan, T. Pyrimidine: an elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem. Biol. Drug Des. 100, 818–842 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Li, J. J. & Corey, E. J. Name Reactions in Heterocyclic Chemistry II (Wiley, 2011).

  12. Liu, Y. F. et al. A facile total synthesis of imatinib base and its analogues. Org. Process Res. Dev. 12, 490–495 (2008).

    Article  CAS  Google Scholar 

  13. CAS SciFindern database search for commercial fragments: amidines 178,649, hydrazines 830,858 (CAS SCIFINDER, accessed November 2023); https://scifinder-n.cas.org.

  14. Boyle, B. T., Levy, J. N., de Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378, 773–779 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Selingo, J. D. et al. A general strategy for N-(hetero)arylpiperidine synthesis using Zincke imine intermediates. J. Am. Chem. Soc. 146, 936–945 (2023).

    Article  PubMed  Google Scholar 

  16. Bartholomew, G. L. et al. 14N to 15N isotopic exchange of nitrogen heteroaromatics through skeletal editing. J. Am. Chem. Soc. 146, 2950–2958 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Barczynski, P. & Vanderplas, H. C. Ring transformations in reactions of heterocyclic-compounds with nucleophiles. Conversion of 5-nitropyrimidine into 2-substituted 5-nitropyrimidine and 2-amino-5-nitropyridines by amidines. J. Org. Chem. 47, 1077–1080 (1982).

    Article  CAS  Google Scholar 

  18. Hu, Y., Stumpfe, D. & Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem. 60, 1238–1246 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Lamberth, C. Agrochemical lead optimization by scaffold hopping. Pest Manag. Sci. 74, 282–292 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Bartholomew, G. L., Carpaneto, F. & Sarpong, R. Skeletal editing of pyrimidines to pyrazoles by formal carbon deletion. J. Am. Chem. Soc. 144, 22309–22315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishiwaki, N., Ogihara, T., Takami, T., Tamura, M. & Ariga, M. New synthetic equivalent of nitromalonaldehyde treatable in organic media. J. Org. Chem. 69, 8382–8386 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Terrier, F. Modern Nucleophilic Aromatic Substitution (Wiley-VCH, 2013).

  27. Crawley, M. L. & Trost, B. M. Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective (John Wiley & Sons, 2012).

  28. Verbitskiy, E. V., Rusinov, G. L., Chupakhin, O. N. & Charushin, V. N. Recent advances in direct C–H functionalization of pyrimidines. Synthesis 50, 193–210 (2018).

    Article  CAS  Google Scholar 

  29. Ham, W. S., Choi, H., Zhang, J., Kim, D. & Chang, S. C2-selective, functional-group-divergent amination of pyrimidines by enthalpy-controlled nucleophilic functionalization. J. Am. Chem. Soc. 144, 2885–2892 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Groll, K. et al. Regioselective metalations of pyrimidines and pyrazines by using frustrated Lewis pairs of BF3.OEt2 and hindered magnesium- and zinc-amide bases. Angew. Chem. Int. Ed. 52, 6776–6780 (2013).

    Article  CAS  Google Scholar 

  31. Dolewski, R. D., Fricke, P. J. & McNally, A. Site-selective switching strategies to functionalize polyazines. J. Am. Chem. Soc. 140, 8020–8026 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rheault, T. R. et al. Discovery of dabrafenib: a selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors. ACS Med. Chem. Lett. 4, 358–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chiodi, D. & Ishihara, Y. “Magic chloro”: profound effects of the chlorine atom in drug discovery. J. Med. Chem. 66, 5305–5331 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Mao, Y., Tian, S. X., Zhang, W. & Xu, G. Y. Preparation and application of vinamidinium salts in organic synthesis. Chin. J. Org. Chem. 36, 700–710 (2016).

    Article  CAS  Google Scholar 

  35. Marcoux, J. F. et al. A general preparation of pyridines and pyridones via the annulation of ketones and esters. J. Org. Chem. 66, 4194–4199 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, C. & Birney, D. M. A density functional theory study clarifying the reactions of conjugated ketenes with formaldimine. A plethora of pericyclic and pseudopericyclic pathways. J. Am. Chem. Soc. 124, 5231–5241 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kukier, G. A., Turlik, A., Xue, X. S. & Houk, K. N. Violations. How nature circumvents the Woodward–Hoffmann rules and promotes the forbidden conrotatory 4n + 2 electron electrocyclization of Prinzbach’s vinylogous sesquifulvalene. J. Am. Chem. Soc. 143, 21694–21704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Institutes of Health under award no. R01 GM144591 and from the Albert I. Meyers Foundation at Colorado State University. R.S.P. acknowledges support from the NSF (CHE-1955876) and computational resources from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) through allocation TG-CHE180056. This work also used the Alpine high performance computing resource at the University of Colorado Boulder, jointly funded by the University of Colorado Boulder, the University of Colorado Anschutz and Colorado State University.

Author information

Authors and Affiliations

Authors

Contributions

B.J.H.U. and C.M.J. performed the experimental work. A.M., B.J.H.U. and C.M.J. conceptualized the work. The computational studies were performed by R.S.P. and L.d.L. All authors contributed to the design of the experimental and computational work and to data analysis, discussed the results and commented on the manuscript. A.M. and R.S.P. wrote the manuscript.

Corresponding authors

Correspondence to Robert S. Paton or Andrew McNally.

Ethics declarations

Competing interests

A provisional patent has been filed for this work. The authors declare no other competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional examples of pyrimidine functionalization and pyrimidine to pyridine conversion.

a, Additional example of pyrimidine halogenation. b, Additional examples of pyrimidine to pyridine conversion using methyl ketones. Isolated yields are shown. Vinamidinium salt formation: Tf2O (1 equiv), 4-trifluoromethylaniline (1 equiv), collidine (1 equiv), EtOAc, –78 °C to room temperature, then pyrrolidine (6 equiv), EtOH, 60 °C. aIsolated yield of vinamidinium salt from pyrimidine.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–4 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhlenbruck, B.J.H., Josephitis, C.M., de Lescure, L. et al. A deconstruction–reconstruction strategy for pyrimidine diversification. Nature 631, 87–93 (2024). https://doi.org/10.1038/s41586-024-07474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07474-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing