Skip to main content

All Questions

1 vote
2 answers
382 views

Electric field in the center of hemisphere shell without double/triple integrals

I'm trying to derive the electric field in the centre of a solid hemisphere of radius $ R $ where the charge is distributed uniformly. I have seen different methods involving double/triple integrals ...
Jon's user avatar
  • 493
1 vote
1 answer
254 views

Why did we take gradient outside the integral sign in Scalar potential derivation?

I tried to understand the reasoning given in it but I couldn't understand it. It says that "as the gradient operation involves x and not the integration variable x', it can be taken outside the ...
Haaran Ajgaonkar's user avatar
1 vote
2 answers
4k views

How is the curl of the electric field of a dipole zero?

For a static charge, the curl of the electric field is zero. But in the case of a static dipole the electric lines of force curl. How it that possible?
AMITAV SAHU's user avatar
1 vote
1 answer
40 views

Electric field at a point created by a charged object (derivation/integration process)

I was hoping someone can help me understand the math behind the electric field (electrostatics). I have gaps in my knowledge about integrals and derivatives (university moves very quickly and it has ...
1899DVX's user avatar
  • 19
1 vote
1 answer
113 views

Proof that $\nabla \times E = 0$ using Stoke's theorem [closed]

One way that Jackson proves that $\nabla \times E = 0$ is the following: $$ F = q E $$ $$ W = - \int_A^B F \cdot dl = - q \int_A^B E \cdot dl = q \int_A^B \nabla \phi \cdot dl = q \int_A^B d \phi = ...
ngc1300's user avatar
  • 284
1 vote
1 answer
175 views

Flux of an inverse square field

This question came in my physics test: What is the value of the surface integral $\oint_S\frac{\overrightarrow{r}}{r^3} \,\cdot\mathrm{d}\overrightarrow{A}$ for r>0? The professor says that the ...
user avatar
1 vote
1 answer
137 views

Other method for finding the equations of the electric field lines

I have an electric potential which, through separation of variables, can be written as $$\phi (x,y)= X(x) \cdot Y(y) =\sum_{n=0}^\infty Cn\cdot \cos(k_n x)\cdot \sinh (k_n y)$$ with $C_n $ and $k_n$ ...
Rye's user avatar
  • 548
0 votes
1 answer
86 views

What are some ways to derive $\left( \boldsymbol{E}\cdot \boldsymbol{E} \right) \nabla =\frac{1}{2}\nabla \boldsymbol{E}^2$?

For each of the two reference books the constant equations are as follows: $$ \boldsymbol{E}\times \left( \nabla \times \boldsymbol{E} \right) =-\left( \boldsymbol{E}\cdot \nabla \right) \boldsymbol{E}...
Vancheers's user avatar
  • 105
0 votes
3 answers
141 views

Problem in finding the divergence at a point [duplicate]

I am solving a problem given as Divergence of $\frac{\textbf{r}}{r^3}$ is a) zero at the origin b) zero everywhere c) zero everywhere except the origin d) nonzero everywhere The answer is given as (...
Iti's user avatar
  • 436
0 votes
4 answers
4k views

I don't understand the logic/concept of $\mathrm dQ=\lambda\,\mathrm dx$. How did we arrive at this expression?

So I've been learning Electrostatics. So while solving for the Electric Field Due to an infinite positively charged rod, I encountered the following expression on the internet wherein the following ...
Vishwas Sharma's user avatar
0 votes
2 answers
195 views

Does the number of field lines crossing an area depend upon angle between them?

Consider Electric Field Lines crossing a square area (for simplicity) such that all field lines are parallel and make an angle say $\alpha$ with the area vector of the square. Let us vary the angle $\...
Tony Stark's user avatar
  • 1,568
0 votes
1 answer
202 views

Divergence of inverse cube law

My intuition tells me that the divergence of the vector field $$\vec{E} = \dfrac{\hat{r}}{r^3} $$ should be zero everywhere except at the origin. So I think it should be $$ \vec{\nabla}\cdot \vec{...
Stijn D'hondt's user avatar
0 votes
1 answer
1k views

Gauss's (Divergence) theorem in Classical Electrodynamics

How does divergence theorem holds good for electric field. How does this hold true- $$\iiint\limits_{\mathcal{V}} (\vec{\nabla}\cdot\vec{E})\ \mbox{d}V=\mathop{{\int\!\!\!\!\!\int}\mkern-21mu \...
N.G.Tyson's user avatar
  • 772
0 votes
1 answer
227 views

How should I interpret these integrals from Griffiths 'Intro to Electrodynamics'?

The book defines the electric field at a point $P$ a distance $r$ due to a point charge $q$ as: $$ E = \frac{1}{4\pi \epsilon _0} \frac{q}{r^2}$$ it then tells us that the electric field at a point $P$...
one two's user avatar
  • 345
0 votes
1 answer
38 views

Spherical and Cartesian forms of divergence [closed]

Suppose the electric field found in some region is $$\overrightarrow{E} = ar^3\vec{e}_r$$ in coordinates spherical (a is a constant). What is the charge density? So, using the spherical form of ...
Tassandro Cavalcante's user avatar

15 30 50 per page