7
$\begingroup$

The answer to this question says that Born approximation is essentially equivalent to the tree-level. This can be seen from the Feynman-diagrammatic version of Born series discussed in many NRQM textbooks like Griffiths.

However, the expression of Born scattering amplitude $$\frac{d \sigma}{d \Omega}=\frac{m^2}{4 \pi^2 \hbar^4}\left|\int e^{i \vec{q} \cdot \vec{r}} V(\vec{r})d^3 r\right|^2\tag{1}$$ where $\vec{q}=\vec{k}-\vec{k'}$ and $m$ is the mass of the static scatterer creating a potential $V(\vec{r})$. The dependence of this expression on $\hbar$ is complicated since the $\vec{q}$ contains $\hbar$ since $\vec{p}=\hbar \vec{k}$ and so on. Infact, for a power law potential $$V(r)=r^n\tag{2}$$ the $\hbar$ dependence in differential cross section expressed in terms of energy is $\hbar^{2(n+1)}$ where the exponent vanishes only for the Coulomb potential.

But in discussions of tree-level processes in QFT, it is easy to see that those processes don't have $\hbar$ in it. So, how exactly does the Born approximation relate to tree-level scattering processes in QFT, and more specifically why is there a discrepancy of $\hbar$ in these two seemingly formally equivalent approximations?

$\endgroup$
0

1 Answer 1

5
$\begingroup$

TL;DR: The $n$'th Born approximation of a particle of mass $m$

m----V--------V--------V--------V----m

in scattering perturbation theory of QM (cf. Fig. 11.12 in Griffiths) corresponds to a tree-level Feynman diagram

  M-----M  M-----M  M-----M  M-----M
     |        |        |        |
     |        |        |        |
m------------------------------------m

in QFT, where $m$ interacts with (usually a much heavier) particle of mass $M$ via a mediating/force-carrying particle. There are many other tree-level diagrams in QFT.

It is not clear how to model a generic potential in QM via a force-carrying field in QFT, except for a few cases, such as e.g. the Coulomb and the Yukawa potential.

In the rest of this answer, we will carefully compare the $\hbar$-dependence in QM and QFT.

Example: Rutherford scattering $m+M\to m+M$.

  1. According to the $\hbar$/loop-expansion$^1$ the amputated connected Feynman diagram in QFT contains a factor $\hbar^{L-1}$, where $L$ is the number loops. There is one $\hbar$ for each internal propagator, and one $\hbar^{-1}$ for each vertex. However for this to be true, there are a couple of assumptions:

    • 4-momenta $p^{\mu}=\hbar k^{\mu}$ are replaced with 4-wavevectors $k^{\mu}$.

    • The action $S$ has no explicit $\hbar$-dependence. The 2nd-quantized QED action contains a mass parameter $m_2=\frac{mc}{\hbar}$ and a coupling constant $e_2=\frac{e}{\hbar c}$. We identify the scattering amplitude $$\langle k_1\alpha_1, k_2\alpha_2|{\cal M}|k_3\alpha_3, k_4\alpha_4\rangle \quad=\quad\left(\underbrace{\text{ext. half-leg}}_{=\sqrt{\hbar}}\right)^4\quad\times\quad\underbrace{\begin{matrix}\text{amputated connected}\cr\text{Feynman diagram}\end{matrix}}_{\text{tree-level with factor } \hbar^{-1}}.$$

  2. Alternatively, we can completely eliminate all explicit $\hbar$-dependence in the path integral $Z[J]=\overline{Z}[\overline{J}]$ by normalizing$^2$ $$\overline{S}~=~\frac{S}{\hbar}, \quad \overline{\phi}~=~\frac{\phi}{\sqrt{\hbar}}, \quad \overline{J}~=~\frac{J}{\sqrt{\hbar}}, \quad \overline{m}~=~\frac{mc}{\hbar}, \quad \overline{e}~=~\frac{e}{\sqrt{\hbar c}}, \quad\ldots$$ Then the scattering amplitude $\langle k_1\alpha_1, k_2\alpha_2|{\cal M}|k_3\alpha_3, k_4\alpha_4\rangle$ has no explicit $\hbar$ dependence at all.

  3. The differential cross-section of $2\to 2$ scattering in a $d$-dimensional spacetime is $$\begin{align} \left(\frac{d\sigma}{d\Omega}\right)_{\rm CM}~=~&\frac{\theta\left(\frac{E_{\rm CM}}{c^2}-m_3-m_4\right)}{64\pi^2\omega_{\rm CM}^2}\frac{|{\bf k}_f|^{d-3}}{|{\bf k}_i|} \sum_{\rm spin}|\langle k_1\alpha_1, k_2\alpha_2|{\cal M}|k_3\alpha_3, k_4\alpha_4\rangle|^2, \cr E_{\rm CM}~=~&\hbar\omega_{\rm CM}, \qquad {\bf p}_f~=~\hbar{\bf k}_f, \qquad {\bf p}_i~=~\hbar{\bf k}_i.\end{align}\tag{5.32} $$

  4. The differential cross-section of $2\to 2$ elastic scattering in 3+1D QFT is $$\begin{align} \left(\frac{d\sigma}{d\Omega}\right)_{\rm CM}~=~&\frac{1}{64\pi^2\omega_{\rm CM}^2}\sum_{\rm spin}|\langle k_1\alpha_1, k_2\alpha_2|{\cal M}|k_3\alpha_3, k_4\alpha_4\rangle|^2, \cr E_{\rm CM}~=~&\hbar\omega_{\rm CM}.\end{align}\tag{5.33} $$

  5. On the other hand, we may completely eliminate all explicit $\hbar$-dependence in the Schrödinger equation and the scattering theory of QM by normalizing$^2$ $$\overline{H}~=~\frac{H}{\hbar c}, \quad \overline{E}~=~\frac{E}{\hbar c}, \quad \overline{\bf p}~=~\frac{\bf p}{\hbar}, \quad \overline{m}~=~\frac{mc}{\hbar}, \quad \overline{e}~=~\frac{e}{\sqrt{\hbar c}}, \quad\ldots$$

  6. The 1st Born approximation in 3+1D QM is $$\begin{align}\left(\frac{d\sigma}{d\Omega}\right)_{\rm CM}~=~&\left(\frac{1}{4\pi}\frac{2m}{\hbar^2}\right)^2|\widetilde{V}(k)|^2\cr ~=~&\left(\frac{me^2}{2\pi\hbar^2k^2}\right)^2\cr ~=~&\left(\frac{m_2\hbar c e_2^2}{2\pi k^2}\right)^2\cr ~=~&\left(\frac{\overline{m}~\overline{e}^2}{2\pi k^2}\right)^2, \end{align}\tag{5.34+5.36}$$ where we use the Coulomb potential $$V(r)~=~\frac{e^2}{4\pi r} \quad\Leftrightarrow\quad \widetilde{V}(k)~=~\frac{e^2}{k^2}.$$

  7. In particular we see that the powers of $\hbar$ match in the various approaches, cf. OP's question.

References:

  1. M.D. Schwartz, QFT & the standard model, 2014; Sections 5.1 + 13.4. Be aware that Ref. 1. uses units where $c=1=\hbar$, cf. App. A. Also $\epsilon_0=1$.

$^1$ For a proof, see e.g. my Phys.SE answer here.

$^2$ Any physical quantity $Q$ can be normalized to a barred quantity $\overline{Q}=Q\hbar^rc^s$ with dimension $[\overline{Q}]=\text{Length}^p$. A purist can easily modify this normalization to avoid introducing the speed of light $c$ into a non-relativistic problem.

$\endgroup$
7
  • $\begingroup$ I might not have explicitly said this in the question, but I get it why this works for the Rutherford scattering case. I don't understand why this should be true in general i.e. why 1st Born approximated results in QM should be $\hbar$ independent $\endgroup$
    – Sanjana
    Commented May 30 at 16:58
  • $\begingroup$ Notes for later: $\overline{\overline{Q}}=(\hbar/c)^p\overline{Q}$, where $[\overline{\overline{Q}}]=\text{Mass}^p$ and $[\overline{Q}]=\text{Length}^{-p}$, cf. arxiv.org/abs/2109.12092 eqs. (2.2)-(2.3) apart from Langer correction. $\endgroup$
    – Qmechanic
    Commented Jun 1 at 11:08
  • $\begingroup$ Scattering amplitude: $\quad f(\Delta{\bf k})=-\frac{2m}{4\pi\hbar^2}\widetilde{V}(\Delta{\bf k})$, $\quad\widetilde{V}(\Delta{\bf k})=\langle{\bf k}_f|V|{\bf k}_i\rangle$. Yukawa potential: $\quad V(r)=\frac{k_cq_1q_2}{r}e^{-\overline{\mu}r}$ $\quad\Rightarrow$ $\quad\widetilde{V}(k)=\frac{4\pi k_cq_1q_2}{k^2+\overline{\mu}^2}$. Effective 1-body (E1B) theory. Reduced mass? Energy (of 1 particle): $\quad E_{\infty}\approx\frac{p_{\infty}^2}{2m}$. Classical 4D relativistic Rutherford elastic scattering: $\endgroup$
    – Qmechanic
    Commented Jul 10 at 8:51
  • $\begingroup$ Classical 4D relativistic Rutherford scattering: seattlephysicstutor.com/physics/rutherford.html Momentum transfer (of 1 particle): $\quad p=2p_{\infty}\sin\frac{\theta}{2}$. Ang. momentum: $\quad J=bp_{\infty}$. Impact parameter $b$. $\quad\frac{bp_{\infty}^2}{m}=\frac{Jp_{\infty}}{m}=k_cq_1q_2\cot\frac{\theta}{2}$ $\quad\Rightarrow$ $\quad\left(\frac{d\sigma}{d\Omega}\right)_{\rm CM}=\frac{bdb}{d\cos\theta}=\frac{JdJ}{p_{\infty}^2d\cos\theta}$ $=\left(\frac{2mk_cq_1q_2}{\mu^2+4p_{\infty}^2\sin^2\frac{\theta}{2}}\right)^2=\left(\frac{2m k_cq_1q_2}{p^2+\mu^2}\right)^2$. $\endgroup$
    – Qmechanic
    Commented Jul 10 at 12:16
  • $\begingroup$ On-shell radial action: $\quad S_r(r_{\max})=2\int_{r_{\min}}^{r_{\max}}\!dr~p_r(r)$. Radial momentum: $\quad p_r=\sqrt{p_{\infty}^2-2mV(r)-\frac{J^2}{r^2}}$, $\quad p_r(r_{\min})=0$,$\quad p_r(r_{\max})\neq 0$. $r_{\max}<\infty$ regularization. Limit $r_{\max}\to\infty$. Another regularization: $\quad S_r=2\int_{r_{\min}}^{\infty}\!dr~(p_r(r)-p_{\infty})-2p_{\infty}r_{\min}$. $\endgroup$
    – Qmechanic
    Commented Jul 11 at 12:01

Not the answer you're looking for? Browse other questions tagged or ask your own question.