1
$\begingroup$

How do you derive $$T=2\pi\sqrt{I/mgl},$$ where $I$ is the moment of inertia and $l$ is the length of the pendulum? Is it even the right formula? How would I derive a compound pendulum formula for a pendulum similar to a clock pendulum with a disc attached to a rod?

$\endgroup$
4
  • 1
    $\begingroup$ MIT L24 - Pendulums $\endgroup$
    – Farcher
    Commented Jun 27, 2023 at 16:20
  • $\begingroup$ Be careful. You need specify if $I$ is summed up at the center of mass, or at the pivot. $\endgroup$ Commented Jun 28, 2023 at 8:38
  • $\begingroup$ @questioner123 Yes, it's valid formula. You can check that by multiplying $ml$ into numerator and denominator of standard formula $$T_{0}=2\pi {\sqrt {\frac {\ell }{g}}}$$. And point-like mass has $I=m\ell^2$ moment of inertia. $\endgroup$ Commented Jun 28, 2023 at 8:43
  • $\begingroup$ From SHM you have $$\ddot{\theta} = - \left( \tfrac{2 \pi}{T} \right)^2 \theta$$ so find the equations of motion $$\ddot{\theta} = f(\theta)$$ and extract the period $T$ term from it. $\endgroup$ Commented Mar 19 at 14:12

1 Answer 1

0
$\begingroup$

How to drive the equation $~T=\ldots~$enter image description here

you start with the position vectors to the pendulum center of mass $~\vec P_{\rm cm}~$ and the position vector to the disc $~\vec P_d~$

$$\vec P_{\rm cm}=\frac l2\, \begin{bmatrix} \sin(\varphi) \\ \cos(\varphi) \\ \end{bmatrix}\quad, \vec P_d=l\, \begin{bmatrix} \sin(\varphi) \\ \cos(\varphi) \\ \end{bmatrix} $$

from here the velocity of the CM and the velocity of the disc

$$\vec v_{\rm cm}=\frac{d}{dt}\,\vec P_{\rm cm}=\ldots\quad, \vec v_{d}=\frac{d}{dt}\,\vec P_d=\ldots$$

with the kinetic energy

$$T=\frac 12\left(m_p\,\vec v_{\rm cm}\cdot \vec v_{\rm cm}+m_d\vec v_{d}\cdot\,\vec v_{d}+I_{P}\dot\varphi^2\right)$$

the potenzial energy

$$U=m_p\,g\,(\vec P_{\rm cm})_y+m_d\,g\,(\vec P_{d})_y$$

and EL you obtain the equation of motion

$$\ddot\varphi+ \underbrace{\frac{l(m_p\,g+2\,m_d)}{2\,I_P}}_{\omega^2}\,\sin(\varphi)=0$$

for a small angle $~\varphi~$ $$\ddot\varphi+\omega^2\,\varphi=0$$

and with

$$\omega=\frac{2\,\pi}{T}$$

you obtain $~T~$

$\endgroup$

Not the answer you're looking for? Browse other questions tagged or ask your own question.