0
$\begingroup$

Consider a guide for marbles whose profile locally coincides with a function $f(x)$, for example $f (x) = - \frac{1}{2} x ^ 4 + x ^ 3 + x ^ 2-2x + 1.$

Suppose that the reference system is chosen in such a way that $f(x)$ coincides with the altitude; then we know that $mgf(x)$ represents the gravitational potential energy $U(x)$ of a marble placed at $x$. Is it possible to write the equation of motion of a marble, fixed the initial $x,y$ coordinates?

$\endgroup$
2
  • 1
    $\begingroup$ You should make it clear that $f(x)$ represents altitude. So, what is your y coordinate needed for ? $\endgroup$ Commented Jul 5, 2022 at 16:46
  • $\begingroup$ Yes, it is. Question updated. $\endgroup$
    – tomino
    Commented Jul 5, 2022 at 17:22

2 Answers 2

1
$\begingroup$

the position x,y of the marble is:

$$x\mapsto x\\ y\mapsto f(x)$$

from here you can obtain the kinetic energy T

$$T=\frac m2(\dot x^2+\dot y^2)=\frac m2\left[\dot x^2+ \left(\frac{\partial f(x)}{\partial x}\dot x\right)^2\right]+\frac{I_M}{2}\,\dot\varphi^2$$

and the potential energy

$$U=-m\,g\,f(x)$$

apply EL with the roll condition $~\dot\varphi=\frac{\dot x}{r}~$ to obtain the equation of motion

$${\ddot x}+{\frac {{r}^{2} \left( {\frac {d}{dx}}f \left( x \right) \right) m \left( {{\dot x}}^{2}{\frac {d^{2}}{d{x}^{2}}}f \left( x \right) +g \right) }{m{r}^{2}+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{2}m{r}^{2}+I_{{M}}}} =0$$

  • $~I_M=\frac 25\,m\,r^2~$ marble inertial
  • $~r~$ marble radius

Edit

the roll condition should be $~{\dot\varphi}=\frac{v_t}{r}~$

where $~v_t~$ is the path tangential velocity.

$$v_t=\pm{\dot x}\,\sqrt {1+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{2}} $$

thus the EOM $$\ddot x+ \left[ \begin {array}{c} {\frac { \left( {\frac {d}{dx}}f \left( x \right) \right) \left( {\frac {d^{2}}{d{x}^{2}}}f \left( x \right) \right) {{\dot x}}^{2}}{1+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{2}}}+{\frac { \left( {\frac {d}{dx}}f \left( x \right) \right) m\,g\,{r}^{2}}{ \left( 1+ \left( {\frac {d}{dx}}f \left( x \right) \right) ^{2} \right) \left( m{r}^{2}+{\it I_M} \right) }} \end {array} \right] =0$$

$\endgroup$
4
  • $\begingroup$ This will only be the equation of motion if certain assumptions hold. 0) Obviously requires there to be no friction or air resiatance losses. 1) Requires that the marble rolls without slipping. 2) Requres that the marble remains in contact with the lower surface of the guide at all times (an upper surface of the guide could hold the marble down in some places - but then the no slipping requirement wouldn't work). 3) Requires the radius of curvature of the guide to always be greater than that of the marble. $\endgroup$
    – Penguino
    Commented Jul 5, 2022 at 22:53
  • 1
    $\begingroup$ @Penguino you have never heard of the Spherical Cow? :-) $\endgroup$ Commented Jul 6, 2022 at 15:10
  • $\begingroup$ In this way you are assuming that we don't know the equation of motion $x(t)$ along $x-$axis. Instead, I expect that letting the marble fall from a certain position $(x,y)$ and letting $t = 0$ the instant in which it is released, the equations of motion $x(t)$ and $y(t)$ are uniquely determined. $\endgroup$
    – tomino
    Commented Jul 9, 2022 at 9:09
  • $\begingroup$ It should be explicitly stated in this answer that this is not the complete Lagrangian holonomic model, but an approximation, such that the radius of the marble is assumed to be (very close to) zero. The full Lagrangian model, where the marble's radius is not zero, is much more complicated. Plus, the rolling without friction constraint does not look correct to me. $\endgroup$ Commented Jul 10, 2022 at 12:36
0
$\begingroup$

$$y = f(x)$$ means that one can consider parametrization \begin{align} &x = q\\ &y = f(q) \end{align} Let us assume the marble rolls along the curve without friction and it is always in contact with the curve $y = f(x)$, whose radius of curvature is bigger the the marble's radius. A unit vector, tangent to the curve at a point $(q, \, f(q))$ is $$\left(\frac{1}{\sqrt{1+f'(q)^2\,}\,}\,,\,\,\, \frac{f'(q)}{\sqrt{1+f'(q)^2\,}\,}\right)$$ and hence, a unit vector normal (i.e. perpendicular) to the curve at point $(q, \, f(q))$ is $$\left(-\,\frac{f'(q)}{\sqrt{1+f'(q)^2\,}\,}\,,\,\,\, \frac{1}{\sqrt{1+f'(q)^2\,}\,}\right)$$ The position of the marble's center of mass is \begin{align} &x \,=\, q\,-\,\frac{r\,f'(q)}{\sqrt{1+f'(q)^2\,}\,}\\ &y \,=\,f(q)\,+\,\frac{r}{\sqrt{1+f'(q)^2\,}\,} \end{align} and its velocity can be expressed as

\begin{align} &\frac{dx}{dt}\,=\, \left(\, 1 \,-\,\frac{r\,f''(q)}{\sqrt{1+f'(q)^2\,}\,} \,+\, \frac{r\,f'(q)^2f''(q)}{\big(\,1 + f'(q)^2\,\big)^{\frac{3}{2}}}\,\right) \frac{dq}{dt}\\ &\frac{dy}{dt} \,=\, \left(\,f'(q)\,-\,\frac{r\,f'(q)f''(q)}{\big(\,1 + f'(q)^2\,\big)^{\frac{3}{2}}} \,\right) \frac{dq}{dt} \end{align}

Abbreviate

\begin{align} &V(q) \,=\, 1 \,-\,\frac{r\,f''(q)}{\sqrt{1+f'(q)^2\,}\,} \,+\, \frac{r\,f'(q)^2f''(q)}{\big(\,1 + f'(q)^2\,\big)^{\frac{3}{2}}}\\ &W(q) \,=\,f'(q)\,-\,\frac{r\,f'(q)f''(q)}{\big(\,1 + f'(q)^2\,\big)^{\frac{3}{2}}} \end{align}

and thus

\begin{align} &\frac{dx}{dt}\,=\, V(q) \, \frac{dq}{dt}\\ &\frac{dy}{dt} \,=\, W(q) \, \frac{dq}{dt} \end{align}

The angular velocity of the marble from rotation is related to the arclength traversed by the marble as follows: $$r\,\frac{d\varphi}{dt}\,=\, \frac{ds}{dt} \,=\, \sqrt{1 + f'(q)^2\,}\,\frac{dq}{dt}$$

which can be denoted by $$S(q) \,=\, \sqrt{1 + f'(q)^2\,}$$ $$r\,\frac{d\varphi}{dt} \,=\, S(q)\,\frac{dq}{dt}$$

The kinetic and potential energy of the marble are

\begin{align} T \,=\, \frac{m}{2} \left(\,\Big(\frac{dx}{dt}\Big)^2 +\, \Big(\frac{dy}{dt}\Big)^2\,\right) \,+\, \frac{I}{2} \Big(\frac{d\varphi}{dt}\Big)^2 \end{align} $$U \,=\, gm\,y$$

Express the kinetic and potential energy in terms of the coordinate $q$: $$T(q) \,=\, m\Big(\,V(q)^2 +\, W(q)^2\,\Big) \,+\, \frac{I}{r^2} \,S(q)^2$$ \begin{align} T\,=\,\frac{1}{2}\,T(q) \,\Big(\frac{dq}{dt}\Big)^2 \,=\, \left(\,\frac{m}{2} \Big(\,V(q)^2 +\, W(q)^2\,\Big) \,+\, \frac{I}{2r^2} \,S(q)^2 \right) \Big(\frac{dq}{dt}\Big)^2 \end{align} $$U(q) \,=\, gm\,\left(\,f(q)\,+\,\frac{r}{\sqrt{1+f'(q)^2\,}\,}\,\right)$$

Now, to form the eqation of motion, one can go about it in, say, two ways. One can write the Lagrangian of the system $$L \,=\,\frac{1}{2}\, T(q) \,\Big(\frac{dq}{dt}\Big)^2 \,-\, U(q)$$ and derive the Euler-Legrange second order differential equation: $$\frac{d}{dt} \left(\,T(q) \,\Big(\frac{dq}{dt}\Big)\,\right) \,=\, \frac{1}{2}\, T'(q) \,\Big(\frac{dq}{dt}\Big)^2\,-\, U'(q)$$ which can be rewritten in the form $$T(q) \,\frac{d^2q}{dt^2} \, + \, \frac{1}{2}\, T'(q) \,\Big(\frac{dq}{dt}\Big)^2 \,+\, U'(q) \,=\, 0$$ You could also use the conservation of energy, i.e. $$\frac{1}{2}\, T(q) \,\Big(\frac{dq}{dt}\Big)^2 \,+\, U(q) \,=\, E_0$$ where $E_0 \,=\, U(q_0)$ is the constant determined by the initial position of the marble with zero initial velocity: $x_0 = q_0$ and $y_0 = f(q_0)$. After solvling for the derivative of $q=q(t)$ $$\frac{dq}{dt}\,=\, \pm\, \sqrt{\,\frac{2\,E_0 \,-\, 2\,U(q)}{T(q)} \,}$$ The expressions for the functions involved in the right hand side of the equation are fairly heavy. One can achieve a simplification by setting $r \to 0$.

$\endgroup$