2
$\begingroup$

I want to extremize $$\int dt \frac{\sqrt{\dot x ^2 + \dot y ^2}}{y}.$$

I have thought that, since the Lagrangian $L(y, \dot y, \dot x)$ is $t$ dependent only implicitly, that i could use the fact that $$L(z,z') \implies L - z' \partial L / \partial z' = c.$$

So $$L - y' \partial L / \partial y' = c_1,$$ $$L - x' \partial L / \partial x' = c_2$$

But these two equations, when we substitute the values and arrange it, give us $$dy/dx = c_3 \implies y = c_3 x +b.$$

This is certainly wrong, the answer is supposed to be a circle equation. Even so we can solve it another way, i am still confused: Why did we got the wrong answer using the above two equation? If, for example, the Lagrangian was $\int dt \sqrt{\dot x ^2 + \dot y ^2}$, we could use the above approach to get the answer (in this case, a line is the right answer).

$\endgroup$
1
  • $\begingroup$ I find it hard to tell what you think you did because the notation in your question is confusing (and this is presumably what is confusing you): What is the $z$ in the "fact" that you're citing? Where does this fact come from? Why do you think this fact holds for both $x$ and $y$ (and why is the time derivative suddenly $x'$ and not $\dot{x}$)? $\endgroup$
    – ACuriousMind
    Commented Apr 19, 2022 at 10:39

3 Answers 3

3
$\begingroup$

Hint: Noether's theorem yields that $$\begin{align} L\text{ has no }&x\text{-dependence} \cr \quad& \Downarrow&\quad\cr \text{momentum } &p_x \text{ is conserved}, \end{align} $$ and $$\begin{align} L\text{ has no explicit }&t\text{-dependence} \cr \quad& \Downarrow&\quad\cr \text{energy } p_x\dot{x}+p_y\dot{y}&-L\text{ is conserved}. \end{align} $$

$\endgroup$
1
$\begingroup$

with

$$L=\frac{\sqrt{\dot x^2+\dot y^2}}{y}$$ and because L is not a function of x you obtain that

$$\frac{\partial L}{\partial \dot x}=\frac{\dot x}{\sqrt{\dot x^2+\dot y^2}\,y}=\text{constant}$$

from here

$$\frac{\dot x}{\sqrt{\dot x^2+\dot y^2}\,y}\mapsto \frac{1}{\sqrt{1+\left(\frac{dy}{dx}\right)^2}\,y(x)}=\text{constant}$$

or $$\sqrt{1+\frac{dy}{dx}^2}\,y(x)=k^2$$

$\endgroup$
2
  • $\begingroup$ My intension was to show that you don’t need the 𝙱𝚎𝚕𝚝𝚛𝚊𝚖𝚒 𝙸𝚍𝚎𝚗𝚝𝚒𝚝𝚢 to solve this problem what is wrong with this ? $\endgroup$
    – Eli
    Commented Apr 21, 2022 at 6:36
  • 2
    $\begingroup$ Ok, I agree. I end up to the same differential equation as yours but I must admit that your approach is better than mine since it's based on the Physics of the problem while mine is based on Mathematics.+1 $\endgroup$
    – Frobenius
    Commented Apr 21, 2022 at 6:44
0
$\begingroup$

$\newcommand{\bl}[1]{\boldsymbol{#1}} \newcommand{\e}{\bl=} \newcommand{\p}{\bl+} \newcommand{\m}{\bl-} \newcommand{\mb}[1]{\mathbf {#1}} \newcommand{\mc}[1]{\mathcal {#1}} \newcommand{\mr}[1]{\mathrm {#1}} \newcommand{\gr}{\bl>} \newcommand{\les}{\bl<} \newcommand{\greq}{\bl\ge} \newcommand{\leseq}{\bl\le} \newcommand{\plr}[1]{\left(#1\right)} \newcommand{\blr}[1]{\left[#1\right]} \newcommand{\vlr}[1]{\left\vert#1\right\vert} \newcommand{\Vlr}[1]{\left\Vert#1\right\Vert} \newcommand{\lara}[1]{\left\langle#1\right\rangle} \newcommand{\lav}[1]{\left\langle#1\right|} \newcommand{\vra}[1]{\left|#1\right\rangle} \newcommand{\lavra}[2]{\left\langle#1\right|\left#2\right\rangle} \newcommand{\lavvra}[3]{\left\langle#1\right|#2\left|#3\right\rangle} \newcommand{\vp}{\vphantom{\dfrac{a}{b}}} \newcommand{\Vp}[1]{\vphantom{#1}} \newcommand{\hp}[1]{\hphantom{#1}} \newcommand{\x}{\bl\times} \newcommand{\ox}{\bl\otimes} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\qqlraqq}{\qquad\bl{-\!\!\!-\!\!\!-\!\!\!\longrightarrow}\qquad} \newcommand{\qqLraqq}{\qquad\boldsymbol{\e\!\e\!\e\!\e\!\Longrightarrow}\qquad} \newcommand{\tl}[1]{\tag{#1}\label{#1}} \newcommand{\hebl}{\bl{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}}$

$\hebl$

The Beltrami Identity:

If the Lagrangian $\:L\plr{y,y',x}\:$ of a system does not depend explicitly on $\:x$, that is \begin{equation} \dfrac{\partial L}{\partial x}\e 0 \tl{01} \end{equation} then from the Euler-Lagrange equation \begin{equation} \dfrac{\mr d}{\mr dx}\plr{\dfrac{\partial L}{\partial y'}}\m\dfrac{\partial L}{\partial y}\e 0 \tl{02} \end{equation} we have \begin{equation} \dfrac{\mr d}{\mr dx}\plr{y'\dfrac{\partial L}{\partial y'}\m L}\e 0 \tl{03} \end{equation} so \begin{equation} \boxed{\:\:y'\dfrac{\partial L}{\partial y'}\m L\e \texttt{constant}\:\:}\quad \texttt{(Beltrami Identity)} \tl{04} \end{equation}

$\hebl$

For your Lagrangian \begin{equation} \begin{split} \frac{\sqrt{\dot x ^2 \p \dot y ^2}}{y}\mr dt & \e \frac{\sqrt{1\p\plr{\dfrac{\dot y}{\dot x}}^2}}{y}\dot x\,\mr dt\e\frac{\sqrt{1\p\plr{\dfrac{\mr dy/\mr dt}{\mr dx/\mr dt}}^2}}{y}\dfrac{\mr dx}{\mr dt}\,\mr dt\\ &\e\frac{\sqrt{1\p\plr{\dfrac{\mr dy}{\mr dx}}^2}}{y}\mr dx\e\frac{\sqrt{1\p y'^{2}}}{y}\mr dx\\ \end{split} \tl{05} \end{equation} that is \begin{equation} L\plr{y,y',x}\e\frac{\sqrt{1\p y'^{2}}}{y} \tl{06} \end{equation}

Using the Lagrangian \eqref{06} we could find the $\:x\m$parametric representation $\:\blr{x,y\plr{x}}\:$ of the curve directly bypassing its $\:t\m$parametric representation $\:\blr{x\plr{t},y\plr{t}}$, that is the equations of the motion.

$\hebl$

Hint for the Solution

Insert the Lagrangian \eqref{06} in the Beltrami Identity \eqref{04} to find \begin{equation} f\plr{y,y'\e\dfrac{\mr dy}{\mr dx}}\e a\e \texttt{positive constant} \tl{H-01} \end{equation} Solve equation \eqref{H-01} with respect to $\:\mr dx$ to find \begin{equation} \mr dx\e g\plr{y}\mr dy \tl{H-02} \end{equation} In equation \eqref{H-02} make a proper convenient change from the variable $\:y\:$ to an angle variable $\:\theta\:$ \begin{equation} y\e h\plr{\theta} \tl{H-03} \end{equation} Convert equation \eqref{H-02} to something like that \begin{equation} \mr dx\e q\plr{\theta}\mr d\theta \tl{H-04} \end{equation} Integrate equation \eqref{H-04} to have \begin{equation} x\e u\plr{\theta} \tl{H-05} \end{equation} Equations \eqref{H-03} and \eqref{H-05} give a $\:\theta\m$parametric representation of the motion orbit.

$\endgroup$
2
  • 1
    $\begingroup$ @Billy Istiak : I think that my new detailed equation \eqref{05} answers your question. $\endgroup$
    – Frobenius
    Commented Apr 19, 2022 at 6:14
  • 1
    $\begingroup$ @Billy Istiak : No, my Lagrangian $L(y,y',x)$ of equation \eqref{06} is independent of x $$\dfrac{\partial L}{\partial x}=0 $$ $\endgroup$
    – Frobenius
    Commented Apr 19, 2022 at 7:10

Not the answer you're looking for? Browse other questions tagged or ask your own question.