2
$\begingroup$

I’m trying to derive the equation from the Hamiltonian

$$H=\frac{1}{m}[\vec{\sigma} \cdot (\vec p-q\vec A)]^2+ q \phi$$

and

$$[\vec{\sigma} \cdot (\vec p-q\vec A)]^2= (\vec p-q\vec A)^2-iq \vec{\sigma} \cdot \nabla \times (\vec p-q\vec A).$$

I don’t know how the term $\nabla \times \vec p$ vanish in the result...

$\endgroup$

1 Answer 1

2
$\begingroup$

Using relation $\sigma_i\sigma_j=\delta_{ij}+i\epsilon_{ijk}\sigma_k$ and denotation $P_i=p_i-eA_i$, we can write $$(\sigma_iP_i)(\sigma_jP_j)=\delta_{ij}P_iP_j+i\epsilon_{ijk}P_iP_j\sigma_k,$$ where the last term explicitly is $$P_iP_j=p_ip_j-ep_iA_j-eA_ip_j+e^2A_iA_j.$$ Due to $\epsilon_{ijk}p_ip_j=0$ and $\epsilon_{ijk}A_iA_j=0$, you should find $$-i\epsilon_{ijk}p_iA_j\sigma_k-i\epsilon_{ijk}A_ip_j\sigma_k\rightarrow+(\nabla\times {\bf A})\cdot\sigma=\sigma\cdot{\bf H}.$$

In your notation, you should see that $$\nabla\times{\bf p}=\epsilon_{ijk}\partial_jp_k=-i\epsilon_{ijk}\partial_j\partial_k,$$ which goes to zero due to the fact that ${\bf v}\times{\bf v}=0$, where ${\bf v}$ is arbitrary vector.

$\endgroup$
6
  • $\begingroup$ What is the motivation for the Hamiltonian that you start with? $\endgroup$
    – my2cts
    Commented Feb 23, 2020 at 11:02
  • $\begingroup$ @my2cts it’s the Hamiltonian of a charged particle in a magnetic field. $\endgroup$
    – RicknJerry
    Commented Feb 23, 2020 at 13:06
  • $\begingroup$ Do you have a reference? I notice that it has no rest mass and no kinetic energy . $\endgroup$
    – my2cts
    Commented Feb 23, 2020 at 13:18
  • $\begingroup$ @my2cts I just use part of hamiltonian $\endgroup$ Commented Feb 23, 2020 at 13:20
  • $\begingroup$ Part of which Hamiltonian? A reference would be helpful. $\endgroup$
    – my2cts
    Commented Feb 23, 2020 at 13:29

Not the answer you're looking for? Browse other questions tagged or ask your own question.