1
$\begingroup$

I'm running into a problem where a rigid rotor in the the (non-inertial) principle axis frame of reference seems to violate Ehrenfest's theorem by a minus sign.

Consider a rigid rotor with Hamiltonian $H = J_j^2/2I_j$ (summation implied, and we use the principle axis reference frame)

Using the Heisenberg Equations of Motion:

$\begin{align} \dot{J_i} &= \frac{1}{i\hbar} \left[J_i, J_j^2/2I_j \right] \\ &= \frac{1}{2 i\hbar I_j} \left( J_j \left[J_i, J_j\right] + \left[J_i, J_j\right] J_j \right) \\ &= \frac{1}{2 I_j} \epsilon_{ijk} \left( J_j J_k + J_k J_j \right) \\ \end{align}$

taking expectation values:

$\dot{J_i} = \frac{1}{I_j} \epsilon_{ijk} J_j J_k \Rightarrow \dot{\vec{J}} = \vec{\omega} \times \vec{J}$

but Euler's equations

(c.f. http://en.wikipedia.org/wiki/Euler%27s_equations_(rigid_body_dynamics) )

say that, since the torque on the body is zero that:

$ \dot{\vec{J}} = - \vec{\omega} \times \vec{J} $

Where did I lose my the minus sign?

$\endgroup$
1
  • $\begingroup$ i should mention this is problem 3.6 in sakurai $\endgroup$
    – Reid Hayes
    Commented Oct 6, 2016 at 21:17

0