Skip to main content
Notice removed Draw attention by amilton moreira
Bounty Ended with Chiral Anomaly's answer chosen by amilton moreira
Notice added Draw attention by amilton moreira
Bounty Started worth 300 reputation by amilton moreira
added 991 characters in body; edited tags; edited title
Source Link

Coordinates of emission and reflection of a photon How scalars appear in Goldstone's theorem

Let $\gamma(s)$$G$ be the worldline of a photonlie group and $G_i$ its generators. In coordinatesSuppose for a set of fields $x$$\chi_{\alpha}(x)$ we have $x(\gamma(s))=(x^0(s),x^1(s),x^2(s),x^3(s))$enter image description here $$ \left[G_{i}, \chi_{\alpha}(x)\right]=-\left(g_{i}\right)_{\alpha \beta} \chi_{\beta}(x) $$

The tangent vector $V$ ofIf the photon in this coordinates is given by $V=\dot{x}^a \frac{\partial}{\partial x^a}$. LetLagragian $g$ be$\mathcal{L}$ is invariant under the metric in this space , since $V$ is null$G$ then we have the conserved charges $$ G_{i} \equiv Q_{i}=\int d^{3} x J_{i}^{o}=\int d^{3} x\left[\frac{\partial \mathcal{L}}{\partial \partial_{o} \chi_{\alpha}} \frac{1}{i}\left(g_{i}\right)_{\alpha \beta} \chi_{\beta}\right] $$ Suppose that $$ \left\langle 0\left|\left[G_{i}, \chi_{\alpha}(x)\right]\right| 0\right\rangle=-\left(g_{i}\right)_{\alpha \beta}\left\langle 0\left|\chi_{\beta}(x)\right| 0\right\rangle \neq0. $$ then we have $$g(V,V)=\dot{x}^a\dot{x}^b g\left(\frac{\partial}{\partial x^a},\frac{\partial}{\partial x^b}\right)=\dot{x}^a\dot{x}^b g_{ab}=0 \tag 1$$$$ \begin{aligned} \left(g_{i}\right)_{\alpha \beta}\left\langle 0\left|\chi_{\beta}(x)\right| 0\right\rangle=& \sum_{n} \int d^{3} y\left\{\left\langle 0\left|e^{-i P y} J_{i}^{o}(0) e^{i P y}\right| n\right\rangle\left\langle n\left|\chi_{\alpha}(x)\right| 0\right\rangle\right.\\ &\left.-\left\langle 0\left|\chi_{\alpha}(x)\right| n\right\rangle\left\langle n\left|e^{-i P y} J_{i}^{o}(0) e^{i P y}\right| 0\right\rangle\right\} \\ =& \sum_{n} \int d^{3} y e^{i P_{n} y}\left\langle 0\left|J_{i}^{o}(0)\right| n\right\rangle\left\langle n\left|\chi_{\alpha}(x)\right| 0\right\rangle \\ &-\sum_{n} \int d^{3} y e^{-i P_{n} y}\left\langle 0\left|\chi_{\alpha}(x)\right| n\right\rangle\left\langle n\left|J_{i}^{o}(0)\right| 0\right\rangle \\ =& \sum_{n}(2 \pi)^{3} \delta^{3}\left(\vec{p}_{n}\right)\left\{e^{-i P_{n}^{o} y^{o}}\left\langle 0\left|J_{i}^{o}(0)\right| n\right\rangle\left\langle n\left|\chi_{\alpha}(x)\right| 0\right\rangle\right.\\ &\left.-e^{+i P_{n}^{o} y^{o}}\left\langle 0\left|\chi_{\alpha}(x)\right| n\right\rangle\left\langle n\left|J_{i}^{o}(0)\right| 0\right\rangle\right\} \end{aligned} $$ MultiplyingBy assumption this expression does not vanish and, furthermore, since the LHS is independent of $(1)$ by$y^{o}$ it must also be independent of $ds$ and solve$y^{o} .$ Clearly this can only happen if in relation tothe theory there exist some massless one-particle states $dx^0$ we obtain two solution \begin{array}{l} d x^{0(1)}=\frac{1}{g_{00}}\left(-g_{0 \alpha} d x^{\alpha}-\sqrt{\left.\left(g_{0 \alpha} g_{0 \beta}-g_{\alpha \beta} g_{00}\right) d x^{\alpha} d x^{\beta}\right)}\right. \\ d x^{0(2)}=\frac{1}{g_{00}}\left(-g_{0 \alpha} d x^{\alpha}+\sqrt{\left(g_{0 \alpha} g_{0, \beta}-g_{\alpha \beta} g_{00}\right) d x^{\alpha} d x^{\beta}}\right) \tag 2 \end{array}$|n\rangle$ and only these states contribute to the sum.

Now as is showed in the figure Bob sends light towards Alice andThis is immediately back reflected back to Bob.If $x_e^0$ is the time coordinatesproof that I found of emission andGoldstone theorem $x_r^0$ is the time coordinates of reception of.

But the photon by Bob why we haveproof only shows that particles are massless $x_e^0=x^0+ d x^{0(1)}$. How do we show that these particles are scalars and how the fields $x_r^0=x^0+ d x^{0(2)}$?

I am extracting this from$\phi_i$ associated with this Wikipedia page Synchronous frame$$|p,i\rangle$$ particles transform under the group $G$ ?

Coordinates of emission and reflection of a photon

Let $\gamma(s)$ be the worldline of a photon. In coordinates $x$ we have $x(\gamma(s))=(x^0(s),x^1(s),x^2(s),x^3(s))$enter image description here

The tangent vector $V$ of the photon in this coordinates is given by $V=\dot{x}^a \frac{\partial}{\partial x^a}$. Let $g$ be the metric in this space , since $V$ is null we have that $$g(V,V)=\dot{x}^a\dot{x}^b g\left(\frac{\partial}{\partial x^a},\frac{\partial}{\partial x^b}\right)=\dot{x}^a\dot{x}^b g_{ab}=0 \tag 1$$ Multiplying $(1)$ by $ds$ and solve in relation to $dx^0$ we obtain two solution \begin{array}{l} d x^{0(1)}=\frac{1}{g_{00}}\left(-g_{0 \alpha} d x^{\alpha}-\sqrt{\left.\left(g_{0 \alpha} g_{0 \beta}-g_{\alpha \beta} g_{00}\right) d x^{\alpha} d x^{\beta}\right)}\right. \\ d x^{0(2)}=\frac{1}{g_{00}}\left(-g_{0 \alpha} d x^{\alpha}+\sqrt{\left(g_{0 \alpha} g_{0, \beta}-g_{\alpha \beta} g_{00}\right) d x^{\alpha} d x^{\beta}}\right) \tag 2 \end{array}

Now as is showed in the figure Bob sends light towards Alice and is immediately back reflected back to Bob.If $x_e^0$ is the time coordinates of emission and $x_r^0$ is the time coordinates of reception of the photon by Bob why we have $x_e^0=x^0+ d x^{0(1)}$ and $x_r^0=x^0+ d x^{0(2)}$?

I am extracting this from this Wikipedia page Synchronous frame

How scalars appear in Goldstone's theorem

Let $G$ be a lie group and $G_i$ its generators. Suppose for a set of fields $\chi_{\alpha}(x)$ we have $$ \left[G_{i}, \chi_{\alpha}(x)\right]=-\left(g_{i}\right)_{\alpha \beta} \chi_{\beta}(x) $$

If the Lagragian $\mathcal{L}$ is invariant under the $G$ then we have the conserved charges $$ G_{i} \equiv Q_{i}=\int d^{3} x J_{i}^{o}=\int d^{3} x\left[\frac{\partial \mathcal{L}}{\partial \partial_{o} \chi_{\alpha}} \frac{1}{i}\left(g_{i}\right)_{\alpha \beta} \chi_{\beta}\right] $$ Suppose that $$ \left\langle 0\left|\left[G_{i}, \chi_{\alpha}(x)\right]\right| 0\right\rangle=-\left(g_{i}\right)_{\alpha \beta}\left\langle 0\left|\chi_{\beta}(x)\right| 0\right\rangle \neq0. $$ then we have $$ \begin{aligned} \left(g_{i}\right)_{\alpha \beta}\left\langle 0\left|\chi_{\beta}(x)\right| 0\right\rangle=& \sum_{n} \int d^{3} y\left\{\left\langle 0\left|e^{-i P y} J_{i}^{o}(0) e^{i P y}\right| n\right\rangle\left\langle n\left|\chi_{\alpha}(x)\right| 0\right\rangle\right.\\ &\left.-\left\langle 0\left|\chi_{\alpha}(x)\right| n\right\rangle\left\langle n\left|e^{-i P y} J_{i}^{o}(0) e^{i P y}\right| 0\right\rangle\right\} \\ =& \sum_{n} \int d^{3} y e^{i P_{n} y}\left\langle 0\left|J_{i}^{o}(0)\right| n\right\rangle\left\langle n\left|\chi_{\alpha}(x)\right| 0\right\rangle \\ &-\sum_{n} \int d^{3} y e^{-i P_{n} y}\left\langle 0\left|\chi_{\alpha}(x)\right| n\right\rangle\left\langle n\left|J_{i}^{o}(0)\right| 0\right\rangle \\ =& \sum_{n}(2 \pi)^{3} \delta^{3}\left(\vec{p}_{n}\right)\left\{e^{-i P_{n}^{o} y^{o}}\left\langle 0\left|J_{i}^{o}(0)\right| n\right\rangle\left\langle n\left|\chi_{\alpha}(x)\right| 0\right\rangle\right.\\ &\left.-e^{+i P_{n}^{o} y^{o}}\left\langle 0\left|\chi_{\alpha}(x)\right| n\right\rangle\left\langle n\left|J_{i}^{o}(0)\right| 0\right\rangle\right\} \end{aligned} $$ By assumption this expression does not vanish and, furthermore, since the LHS is independent of $y^{o}$ it must also be independent of $y^{o} .$ Clearly this can only happen if in the theory there exist some massless one-particle states $|n\rangle$ and only these states contribute to the sum.

This is the proof that I found of Goldstone theorem .

But the proof only shows that particles are massless . How do we show that these particles are scalars and how the fields $\phi_i$ associated with this $$|p,i\rangle$$ particles transform under the group $G$ ?

Source Link

Coordinates of emission and reflection of a photon

Let $\gamma(s)$ be the worldline of a photon. In coordinates $x$ we have $x(\gamma(s))=(x^0(s),x^1(s),x^2(s),x^3(s))$enter image description here

The tangent vector $V$ of the photon in this coordinates is given by $V=\dot{x}^a \frac{\partial}{\partial x^a}$. Let $g$ be the metric in this space , since $V$ is null we have that $$g(V,V)=\dot{x}^a\dot{x}^b g\left(\frac{\partial}{\partial x^a},\frac{\partial}{\partial x^b}\right)=\dot{x}^a\dot{x}^b g_{ab}=0 \tag 1$$ Multiplying $(1)$ by $ds$ and solve in relation to $dx^0$ we obtain two solution \begin{array}{l} d x^{0(1)}=\frac{1}{g_{00}}\left(-g_{0 \alpha} d x^{\alpha}-\sqrt{\left.\left(g_{0 \alpha} g_{0 \beta}-g_{\alpha \beta} g_{00}\right) d x^{\alpha} d x^{\beta}\right)}\right. \\ d x^{0(2)}=\frac{1}{g_{00}}\left(-g_{0 \alpha} d x^{\alpha}+\sqrt{\left(g_{0 \alpha} g_{0, \beta}-g_{\alpha \beta} g_{00}\right) d x^{\alpha} d x^{\beta}}\right) \tag 2 \end{array}

Now as is showed in the figure Bob sends light towards Alice and is immediately back reflected back to Bob.If $x_e^0$ is the time coordinates of emission and $x_r^0$ is the time coordinates of reception of the photon by Bob why we have $x_e^0=x^0+ d x^{0(1)}$ and $x_r^0=x^0+ d x^{0(2)}$?

I am extracting this from this Wikipedia page Synchronous frame