5
$\begingroup$

Working the problem of $$I_n=\int_0^1 \frac{\tan ^{-1}\left(x^n\right)}{\sqrt{1-x^n}} \, dx$$ which I have not be able to compute with Mathematica. A tedious work gave the result $$I_n=\frac{\sqrt{\pi }}{n}\,\,\frac{\Gamma \left(\frac{n+1}{n}\right)}{\Gamma \left(\frac{3 n+2}{2 n}\right)}\,\,\,\, _4F_3\left(\frac{1}{2},1,\frac{n+1}{2 n},\frac{2 n+1}{2 n};\frac{3}{2},\frac{3 n+2}{4 n},\frac{5 n+2}{4 n};-1\right)$$ which works for any $n$ (even complex).

The syntax is

  (Sqrt[Pi]*Gamma[(1 + n)/n]*HypergeometricPFQ[{1/2, 1, 1/2 + 1/(2*n), 
   1 + 1/(2*n)}, {3/2, 3/4 + 1/(2*n), 5/4 + 1/(2*n)}, -1])/  (n*Gamma[(2 + 3*n)/(2*n)])

Since Mathematica was not able to compute the integral AsymptoticIntegrate is of no help.

Empirically, it seems that $n^2 I_n$ is very close to linearity.

Is there any hope to obtain the asymptotics ?

Thanks in advance.

$\endgroup$
4
  • $\begingroup$ Is there a reason why Asymptotic[yourfunction] is not an option? $\endgroup$
    – mattiav27
    Commented Apr 17 at 7:48
  • $\begingroup$ Both Integrate[ArcTan[x^n]/Sqrt[1 - x^n], {x, 0, 1}, Assumptions -> n > 0] and Integrate[ArcTan[x^n]/Sqrt[1 - x^n], {x, 0, 1}, Assumptions ->n\[Element] PositiveIntegers] return the input in 14.0 on Windows 10. $\endgroup$
    – user64494
    Commented Apr 17 at 7:57
  • $\begingroup$ @user64494. This is what I had with version 13.0. It took me days of work to arrive at the result. $\endgroup$ Commented Apr 17 at 8:07
  • $\begingroup$ @mattiav27; Have a look at the comment just below your. Cheers $\endgroup$ Commented Apr 17 at 8:08

4 Answers 4

4
$\begingroup$

The following proves your expectations.

FullSimplify[Series[Sqrt[Pi]*Gamma[(1 + n)/n]*
HypergeometricPFQ[{1/2, 1, 1/2 + 1/(2*n), 1 + 1/(2*n)},
{3/2,3/4 + 1/(2*n), 5/4 + 1/(2*n)}, -1]/(n*
Gamma[(2 + 3*n)/(2*n)]), {n, Infinity, 2}] // Normal]

$$\frac{\text{HypergeometricPFQ}^{(\{0,0,0,0\},\{0,0,1\},0)}\left(\left\{\frac{1}{2},1,\frac{1}{2},1\right\},\left\{\frac{3}{2},\frac{3}{4},\frac{5}{4}\right\},-1\right)+\text{HypergeometricPFQ}^{(\{0,0,0,0\},\{0,1,0\},0)}\left(\left\{\frac{1}{2},1,\frac{1}{2},1\right\},\left\{\frac{3}{2},\frac{3}{4},\frac{5}{4}\right\},-1\right)+\text{HypergeometricPFQ}^{(\{0,0,0,1\},\{0,0,0\},0)}\left(\left\{\frac{1}{2},1,\frac{1}{2},1\right\},\left\{\frac{3}{2},\frac{3}{4},\frac{5}{4}\right\},-1\right)+\text{HypergeometricPFQ}^{(\{0,0,1,0\},\{0,0,0\},0)}\left(\left\{\frac{1}{2},1,\frac{1}{2},1\right\},\left\{\frac{3}{2},\frac{3}{4},\frac{5}{4}\right\},-1\right)+2 (n-2+\log (4)) \, _4F_3\left(\frac{1}{2},\frac{1}{2},1,1;\frac{3}{4},\frac{5}{4},\frac{3}{2};-1\right)}{n^2} $$

Expand[N[%]]

$$\frac{1.74825}{n}-\frac{1.17554}{n^2} $$

$\endgroup$
3
  • 1
    $\begingroup$ The same is produced by Asymptotic[ Sqrt[Pi]*Gamma[(1 + n)/n]* HypergeometricPFQ[{1/2, 1, 1/2 + 1/(2*n), 1 + 1/(2*n)}, {3/2, 3/4 + 1/(2*n), 5/4 + 1/(2*n)}, -1]/(n* Gamma[(2 + 3*n)/(2*n)]), {n, Infinity, 2}] // N. $\endgroup$
    – user64494
    Commented Apr 17 at 8:17
  • $\begingroup$ The last one is very good. (+1). Do you knoaw what is the value of HypergeometricPFQ[{1/2, 1/2, 1, 1}, {3/4, 5/4, 3/2}, -1] ? $\endgroup$ Commented Apr 17 at 8:34
  • $\begingroup$ Thanks to the isc, the front factor is $$\sim \frac 1 {10}\,\frac{\Gamma \left(\frac{1}{8}\right) \,\,\Gamma \left(\frac{13}{20}\right)}{\Gamma \left(\frac{31}{40}\right)}$$ (absolute error $2.6\times 10^{-8}$ $\endgroup$ Commented Apr 17 at 9:05
4
$\begingroup$

Another way to get @user64494 result:

Normal@Series[ArcTan[x^n]/Sqrt[1 - x^n], {n, Infinity, 2}]
(*(I Log[1 - I x^n])/(2 Sqrt[1 - x^n]) - (I Log[1 + I x^n])/( 2 Sqrt[1 - x^n])*)

Simplify[Integrate[(I Log[1 - I x^n])/(2 Sqrt[1 - x^n]), {x, 0, 1}, GenerateConditions -> False] + Integrate[-((I Log[1 + I x^n])/(2 Sqrt[1 - x^n])), {x, 0, 1}, GenerateConditions -> False]];
Asymptotic[%, {n, Infinity, 2}] // N // Chop

(*-(1.17554/n^2) + 1.74825/n*)
$\endgroup$
1
  • $\begingroup$ With the two integrals you get an expression involving HypergeometricPFQRegularized and Gamma functions $\endgroup$
    – mattiav27
    Commented Apr 17 at 14:57
1
$\begingroup$

With AsymptoticIntegrate works fine:

$Version
(*"13.3.0 for Microsoft Windows (64-bit) (June 3, 2023)"*)
 
AsymptoticIntegrate[ArcTan[x^n]/Sqrt[1 - x^n] // TrigToExp, {x, 0, 1}, {n, Infinity, 2}]

 (*((-I)*(ArcSin[(-1)^(1/4)]^2 + ArcSinh[(-1)^(1/4)]^2))/n + 
 (Sqrt[Pi]*(((2*I)*EulerGamma*(ArcSin[(-1)^(1/4)]^2 + 
 ArcSinh[(-1)^(1/4)]^2))/Sqrt[Pi] + 
 Derivative[{0, 0, 0}, {0, 1}, 0][HypergeometricPFQRegularized][{1, 1, 1}, {2, 3/2}, -I] + 
 Derivative[{0, 0, 0}, {0, 1}, 0][HypergeometricPFQRegularized][{1, 1, 1}, {2, 3/2}, I] + 
 Derivative[{0, 0, 1}, {0, 0}, 0][HypergeometricPFQRegularized][{1, 1, 1}, {2, 3/2}, -I] + 
 Derivative[{0, 0, 1}, {0, 0}, 0][HypergeometricPFQRegularized][{1, 1, 1}, {2, 3/2}, I]))/(2*n^2)*)

% // N
(*-((1.17554 + 0. I)/n^2) + (1.74825 + 0. I)/n*)

To compute integral we use a trick: $$\int_0^1 \frac{\tan ^{-1}\left(x^n\right)}{\sqrt{1-x^n}} \, dx$$

Integrate[Integrate[D[ArcTan[a x^n]/Sqrt[1 - x^n], a], {x, 0, 1},  
GenerateConditions -> False], {a, 0, 1}] // FunctionExpand

(* (Sqrt[\[Pi]]Gamma[1/n] HypergeometricPFQ[{1/2, 1, 1/2 + 1/(2 n), 1 + 1/(2 n)}, {3/2, 
 3/4 + 1/(2 n), 5/4 + 1/(2 n)}, -1])/(n^2 Gamma[3/2 + 1/n])*)
$\endgroup$
0
$\begingroup$

The solution has already been posted; here are some semi-explicit forms of the series-expansion coefficients:

Sum[(-1)^q/((q + 1/2) Binomial[2 q + 1/2, 1/2]), {q, 0, ∞}]
(*    2 HypergeometricPFQ[{1/2, 1/2, 1, 1}, {3/4, 5/4, 3/2}, -1]    *)

NSum[-((-1)^q/((q + 1/2) Binomial[2 q + 1/2, 1/2])) *
     (HarmonicNumber[2 q + 1/2] - HarmonicNumber[2 q]), {q, 0, ∞}]
(*    -1.17554    *)
$\endgroup$
3
  • $\begingroup$ Nice formula. Thanks. By the way, concerning your book, I would like to be in touch with you. If you agree, send me an e-mail.. Do you have any idea of the asymptotics of $$,\, _4F_3\left(\frac{1}{2},1,\frac{n+1}{2 n},\frac{2 n+1}{2 n};\frac{3}{2},\frac{3 n+2}{4 n},\frac{5 n+2}{4 n};-1\right)$$ ? $\endgroup$ Commented Apr 18 at 8:40
  • $\begingroup$ I contacted you by Email. As for f[n_] = HypergeometricPFQ[{1/2, 1, (n+1)/(2n), (2n+1)/(2n)}, {3/2, (3n+2)/(4n), (5n+2)/(4n)}, -1] we have Series[f[n], {n, ∞, 2}] // N giving $0.874127-\frac{0.0513137}{n}+\frac{0.0293261}{n^2}+O(n^{-3})$. Are you looking for sum formulations of these coefficients? $\endgroup$
    – Roman
    Commented Apr 18 at 11:37
  • $\begingroup$ Yes, I would like to know what they are. Have a look at math.stackexchange.com/questions/4901127/… for the first coefficient. $\endgroup$ Commented Apr 18 at 11:46

Not the answer you're looking for? Browse other questions tagged or ask your own question.