9
$\begingroup$

I am trying to recreate the Poincaré sections given in Figure 2 of this paper. poincare-sections

For this purpose, I use the following two methods:

Method1: Using ResourceFunction["ClickPoincarePlot2D"]

    f = 2  k  x[t];

lagrangian = -Sqrt[f - x'[t]^2/f - y'[t]^2] - \[Omega]^2/
    2  ((x[t] - xc)^2 + y[t]^2);

px1 = D[lagrangian, x'[t]]

py1 = D[lagrangian, y'[t]]

testham = (px1  x'[t] + py1  y'[t]) - lagrangian

k = 1/2; \[Omega] = 10; xc = 1;

hamiltonian[x_, px_, y_, py_] = 
  testham /. x[t] -> x /. x'[t] -> px /. y[t] -> y /. y'[t] -> py;


H := Function[{S}, (2  k  S[[1]])/Sqrt[
   2  k  S[[1]] - S[[2]]^2/(2  k  S[[1]]) - S[[4]]^2] + 
   1/2  (S[[1]]^2 + S[[3]]^2 - 2  S[[1]]  xc + xc^2)  \[Omega]^2]
    
    {a1, b1, c1, d1} = {D[hamiltonian[x[t], px[t], y[t], py[t]], px[t]], 
      D[hamiltonian[x[t], px[t], y[t], py[t]], 
       py[t]], -D[hamiltonian[x[t], px[t], y[t], py[t]], x[t]], -D[
        hamiltonian[x[t], px[t], y[t], py[t]], y[t]]}; abcd = {x'[t] == 
       a1, px'[t] == c1, y'[t] == b1, py'[t] == d1};
    
    cross = y[t]; recover = {x[t], px[t]};
    
    ResourceFunction[
      "ClickPoincarePlot2D"][abcd, H, 15, t, 10000, cross, recover, \
    {PlotStyle -> AbsolutePointSize[1], AspectRatio -> 1, 
      PlotHighlighting -> None, PlotRange -> {{0, 2}, {-20, 20}}}]

Method2: Using algorithm of this answer by @Alex Trounev

psect[{x0_, px0_, y0_, py0_}] := 
 Reap[NDSolve[{abcd, x[0] == x0 + 10^-10, y[0] == y0, px[0] == px0, 
     py[0] == py0, WhenEvent[x[t] == 0, Sow[{y[t], py[t]}]]}, {}, {t, 
     0, 1000}, MaxSteps -> \[Infinity]]][[-1, 1]]

inivalues[E0_, n_, pxmin_, pxmax_] := 
  Module[{x, px, X, y, P, py, Y}, px = RandomReal[{pxmin, pxmax}, n];
   X = Table[0, {n}]; Y = Table[0, {n}]; P = Table[0, {n}];
   Do[{X[[i]], P[[i]], Y[[i]]} = {x, py, y} /. 
       NMinimize[(hamiltonian[x, px[[i]], y, py] - E0)^2, {x, py, 
          y}][[2]];, {i, n}]; Transpose[{X, px, Y, P}]];

iniv = inivalues[15, 100, -0.1, 0.1];

H0[{x_, px_, y_, py_}] = -Sqrt[f - px^2/f - py^2] - \[Omega]^2/
    2 ((x - xc)^2 + y^2) + px^2 + py^2;

abcdata = Map[psect, iniv];

ListPlot[abcdata, ImageSize -> Large, Background -> White, 
 Frame -> True]

I tried to alter the cross and recover variables in both methods but to no avail! The first method gives me an empty plot while the second one provides me with errors!

Any help in this regard would be truly beneficial!

$\endgroup$
6
  • 1
    $\begingroup$ ResourceFunction["ClickPoincarePlot2D"] des not work for me. Even the examples are not working. MMA version 14 $\endgroup$ Commented Jan 21 at 12:00
  • 1
    $\begingroup$ The examples are working on MMA version 13. It is developed by @E. Chan-López, who is also a regular user here, he told about his tool in this answer: mathematica.stackexchange.com/a/290237/78049 $\endgroup$
    – codebpr
    Commented Jan 21 at 12:39
  • 1
    $\begingroup$ I'm working on an update and solving a significant issue that I observed together with Alex Trounev in order to generalize the routine so that it can be applied to more complicated systems. I estimate that I will be able to send an update by the end of February. I appreciate the feedback. $\endgroup$ Commented Jan 21 at 17:45
  • $\begingroup$ Suddenly it stopped working for my MMA version 13 as well! Seems like they are working on it. But what about the second method by @Alex Trounev ? Why am I getting errors for that? $\endgroup$
    – codebpr
    Commented Jan 22 at 5:01
  • 1
    $\begingroup$ @codebpr I'm going to make an interactive version using ClickPane and post it as an answer. Once I have updated the resource function and the new version is accepted in WFR, then I will repost your example using the resource function. $\endgroup$ Commented Jan 22 at 19:40

4 Answers 4

6
$\begingroup$

To detect more islands, it is better to use the interactive method. Here, I provide an example with the result for the case in which the energy is equal to 40.

PoincareSections[{x0_, px0_, y0_, py0_}, e_, tmax_] := 
 Block[{pdy0, x, px, y, py},
  pdy0 = 
   Sqrt[2500 + e^2 - 100*e*(-1 + x0)^2 + 
      x0*(-10001 - px0^2*x0 + 2500*x0*(6 + (-4 + x0)*x0))]/Sqrt[x0];
  If[Head[N[pdy0]] === Complex, Nothing,
   If[# == {}, {}, First[#]] &@Last[Reap[NDSolve[{
        x'[t] == px[t] x[t] Sqrt[x[t]/(1 + py[t]^2 + px[t]^2 x[t])],
        px'[t] == 
         100 - 100 x[t] - 
          px[t]^2 Sqrt[x[t]/(
           1 + py[t]^2 + px[t]^2 x[t])] - ((1 + py[t]^2) Sqrt[x[t]/(
           1 + py[t]^2 + px[t]^2 x[t])])/(2 x[t]),
        y'[t] == py[t] Sqrt[x[t]/(1 + py[t]^2 + px[t]^2 x[t])],
        py'[t] == -100 y[t],
        x[0] == x0,
        px[0] == px0,
        y[0] == y0,
        py[0] == pdy0,
        WhenEvent[y[t], 
         Sow[{x[t], px[t]}, "LocationMethod" -> "EvenLocator"]]
        },
       {x, px, y, py}, {t, 0, tmax}, MaxSteps -> ∞, 
       MaxStepSize -> 0.1
       ]]]]]

Next, use the code with ClickPane found at: The Poincaré Sections of Yang-Mills-Higgs System:

    style = {PlotStyle -> {{AbsolutePointSize[1], GrayLevel[0], 
             Opacity[0.4]}}, AspectRatio -> 1, ImageSize -> 420};
(*Omit the PlotHighlighting option if you're using a version prior to 13.3.*)

    DynamicModule[{f = {}}, 
     Column[{Dynamic[
        MatrixForm@{MousePosition["Graphics", "Mouse not in graphics!"]}],
        Row[{ClickPane[
          Dynamic@ListPlot[f, 
            style], (AppendTo[f, 
             PoincareSections[{#[[1]], #[[2]], 0, 0}, 40, 3000]]) &], 
         Button[Style["Copy orbit list", 12], 
          CopyToClipboard[Iconize[f, "Orbit list"]], 
          ImageSize -> Automatic, Alignment -> Center, 
          Appearance -> {"Palette", "Pressed"}]}, "  "]}, 
      Alignment -> Center]]

The Poincaré section plot looks like this:

style ={PlotStyle -> {{Black, Opacity[0.5], PointSize[0.002]}}, ImageSize -> Large};

ListPlot["Orbit list", style]

enter image description here

Note that you can copy the list of sections by clicking on the button that says Copy orbit list. Afterward, you can save your generated image in PNG format.

enter image description here

Interactively:

enter image description here

The plots of the Poincaré sections for energies 15 and 49.5 respectively look like this: enter image description here

enter image description here

To export your images with high quality, I recommend the following post: Obtaining better quality in ListPlot.

enter image description here

$\endgroup$
7
  • 1
    $\begingroup$ Thank you for your solution (+1). $\endgroup$ Commented Jan 22 at 23:44
  • 1
    $\begingroup$ @E.Chan-López thank you for the interactive method. Just a small question, what does pdy0 denote in your code? Have you solved for the Hamiltonian to get it, where e is the energy of the system? $\endgroup$
    – codebpr
    Commented Jan 23 at 4:41
  • 1
    $\begingroup$ @codebpr The variable pdy0 is the initial condition that is updated every time you click on the plane (x, px) considered in WhenEvent. $\endgroup$ Commented Jan 23 at 5:04
  • 1
    $\begingroup$ @E.Chan-López thanks for clarifying. One more doubt, can I export the image as a png file from this interactive plot? Or in other words, how did you get the first image in your answer? $\endgroup$
    – codebpr
    Commented Jan 23 at 5:17
  • 1
    $\begingroup$ @codebpr I hope you generate high-quality images and share the result with the community. I'll move on to placing an additional answer here when I've updated the ClickPoincarePlot2D resource function. $\endgroup$ Commented Jan 23 at 5:44
7
$\begingroup$

There are several problems with your code:

  • Hamiltonian construction is not correct (you need to solve for velocities in terms of momenta, not just substitute $x' \to p_x$ and $y' \to p_y$)
  • In the linked paper the section is in $(x, p_x)$, while your event is WhenEvent[x[t] == 0, Sow[{y[t], py[t]}]] which is wrong

Note, while solving for $p_x$ and $p_y$ I just took one of the branches. Similarly solving for $p_y$ for given $(x, p_x)$ and $y = 0$, I just assume the last solution is positive. Sections looks close, but you need to check my assumptions.

k = 1/2 ;
w = 10 ; 
c = 1 ;

lagrangian = -Sqrt[2 k x[t] - x'[t]^2/(2 k x[t]) - y'[t]^2] - w^2/2 ((x[t] - c)^2 + y[t]^2) ;

Px = D[lagrangian, x'[t]] ;
Py = D[lagrangian, y'[t]] ;
hamiltonian = ((Px x'[t] + Py y'[t]) - lagrangian) /. (Solve[{px[t] == Px, py[t] == Py}, {x'[t], y'[t]}] // Last) // FullSimplify ;

equations = {
    x'[t] == +D[hamiltonian, px[t]],
    y'[t] == +D[hamiltonian, py[t]],
    px'[t] == -D[hamiltonian, x[t]], 
    py'[t] == -D[hamiltonian, y[t]]
} // Simplify ;


ClearAll[solution] ;
solution[X_, PX_] := Reap@NDSolve[
        Flatten[
            {
                equations, 
                {x[0] == X, px[0] == PX, y[0] == 0, py[0] == initial[X, PX]},
                WhenEvent[y[t] == 0 && y'[t] > 0, Sow[{x[t], px[t]}]]
            }
        ],
        {},
        {t, 0.0, T},
        MaxSteps -> Infinity
] ;

T = 2000.0 ;

energy = 15.0 ;
constraint = (py /. Solve[energy == hamiltonian /. {x[t] -> x, px[t] -> px, y[t] -> 0, py[t] -> py}, py]) // Last ;
ClearAll[initial] ;
initial[x_?NumericQ, px_?NumericQ] := Evaluate[constraint]
ListPlot[Table[solution[X, 0.0] // Last // First, {X, 0.5, 1.5, 0.01}], PlotRange->All, PlotTheme -> "Detailed", PlotStyle -> Directive[{PointSize[Tiny], Black}], AspectRatio -> 1/GoldenRatio, ImageSize->Large, GridLines->None]

energy = 40.0 ;
constraint = (py /. Solve[energy == hamiltonian /. {x[t] -> x, px[t] -> px, y[t] -> 0, py[t] -> py}, py]) // Last ;
ClearAll[initial] ;
initial[x_?NumericQ, px_?NumericQ] := Evaluate[constraint]
ListPlot[Table[solution[X, 0.0] // Last // First, {X, 0.2, 1.5, 0.01}], PlotRange->All, PlotTheme -> "Detailed", PlotStyle -> Directive[{PointSize[Tiny], Black}], AspectRatio -> 1/GoldenRatio, ImageSize->Large, GridLines->None]

energy = 49.5 ;
constraint = (py /. Solve[energy == hamiltonian /. {x[t] -> x, px[t] -> px, y[t] -> 0, py[t] -> py}, py]) // Last ;
ClearAll[initial] ;
initial[x_?NumericQ, px_?NumericQ] := Evaluate[constraint]
ListPlot[Table[solution[X, 0.0] // Last // First, {X, 0.2, 1.5, 0.01}], PlotRange->All, PlotTheme -> "Detailed", PlotStyle -> Directive[{PointSize[Tiny], Black}], AspectRatio -> 1/GoldenRatio, ImageSize->Large, GridLines->None]

enter image description here enter image description here enter image description here

$\endgroup$
7
  • $\begingroup$ It is a nice solution (+1). Maybe it could be better to variate y[0] as well. $\endgroup$ Commented Jan 22 at 11:38
  • $\begingroup$ @AlexTrounev, right, it seems they've used $y=0.1$ (see page 5) $\endgroup$
    – I.M.
    Commented Jan 22 at 11:48
  • $\begingroup$ In general case it could be better to use random values as in my answer. $\endgroup$ Commented Jan 22 at 12:08
  • $\begingroup$ @I.M. Thank you for rectifying my conceptual error! $\endgroup$
    – codebpr
    Commented Jan 22 at 12:08
  • 1
    $\begingroup$ @AlexTrounev, could you explain about using random being beneficial? From my understanding with random initials you hit more islands? $\endgroup$
    – I.M.
    Commented Jan 22 at 17:44
4
$\begingroup$

As mentioned by I.M. the Hamiltonian could be derive with using Legendre transformation - see for example here. Therefore we have

k = 1/2;
w = 10;
c = 1;

lagrangian = -Sqrt[2  k  x[t] - x'[t]^2/(2  k  x[t]) - y'[t]^2] - 
   w^2/2  ((x[t] - c)^2 + y[t]^2);

Px = D[lagrangian, x'[t]];
Py = D[lagrangian, y'[t]];
hamiltonian = ((Px  x'[t] + Py  y'[t]) - 
     lagrangian) /. (Solve[{px[t] == Px, py[t] == Py}, {x'[t], 
       y'[t]}] // First) /. {x[t] -> x, px[t] -> px, y[t] -> y, 
   py[t] -> py}

Last expression we use in two forms

h[x_, px_, y_, py_] := (
   py^2 x)/((1 + py^2 + px^2 x) Sqrt[
    x - (py^2 x)/(1 + py^2 + px^2 x) - (px^2 x^2)/(
     1 + py^2 + px^2 x)]) + (
   px^2 x^2)/((1 + py^2 + px^2 x) Sqrt[
    x - (py^2 x)/(1 + py^2 + px^2 x) - (px^2 x^2)/(
     1 + py^2 + px^2 x)]) + Sqrt[
   x - (py^2 x)/(1 + py^2 + px^2 x) - (px^2 x^2)/(
    1 + py^2 + px^2 x)] + 50  ((-1 + x)^2 + y^2);

H0[{x_, px_, y_, py_}] := (
   py^2 x)/((1 + py^2 + px^2 x) Sqrt[
    x - (py^2 x)/(1 + py^2 + px^2 x) - (px^2 x^2)/(
     1 + py^2 + px^2 x)]) + (
   px^2 x^2)/((1 + py^2 + px^2 x) Sqrt[
    x - (py^2 x)/(1 + py^2 + px^2 x) - (px^2 x^2)/(
     1 + py^2 + px^2 x)]) + Sqrt[
   x - (py^2 x)/(1 + py^2 + px^2 x) - (px^2 x^2)/(
    1 + py^2 + px^2 x)] + 50  ((-1 + x)^2 + y^2);

In this case we can generate initial values using NMiimize as follows

inivalues[E0_, n_, xmin_, xmax_] := 
  Module[{X, x, px, PX, y, P, py, Y}, 
   x = RandomReal[{xmin, xmax}, n];
   PX = Table[0, {n}]; Y = Table[0, {n}]; P = Table[0, {n}];
   Do[{PX[[i]], P[[i]], Y[[i]]} = {px, py, y} /. 
       NMinimize[(h[x[[i]], px, y, py] - E0)^2, {px, py, 
          y}][[2]];, {i, n}]; Transpose[{x, PX, Y, P}]];

For E0=15 we have iniv = inivalues[15, 100, .5, 1.5];

Map[H0, iniv]

(*Out[]= {15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., \
15., 15., 15., 15.}*)

Therefore the energy is saved for every run. Last portion of code is same as in my answer here, also we use {x[t],px[t]} for visualization and y[t] == 0 && y'[t] > 0 for events detection as in a paper linked

{a1, b1, c1, d1} = {D[h[x[t], px[t], y[t], py[t]], px[t]], 
  D[h[x[t], px[t], y[t], py[t]], 
   py[t]], -D[h[x[t], px[t], y[t], py[t]], x[t]], -D[
    h[x[t], px[t], y[t], py[t]], y[t]]}; abcd = {x'[t] == a1, 
  px'[t] == c1, y'[t] == b1, py'[t] == d1};
psect[{x0_, px0_, y0_, py0_}] := 
 Reap[NDSolve[{abcd, x[0] == x0, y[0] == y0, px[0] == px0, 
     py[0] == py0, 
     WhenEvent[y[t] == 0 && y'[t] > 0, Sow[{x[t], px[t]}]]}, {}, {t, 
     0, 1000}, MaxSteps -> 10^6]][[-1, 1]]

Finally we have

abcdata = Map[psect, iniv];

ListPlot[abcdata, ImageSize -> Large, Background -> Black, 
 Frame -> True]

Figure 1

For E0=40 we have picture Figure 2

And for E0=49.6 Figure 3

$\endgroup$
2
0
$\begingroup$

The resource function ["ClickPoincarePlot2D"] is also working now, thanks to the new update.

I have also used the ScalarPureFunction by @E. Chan-López presented here to simplify my Hamiltonian into a scalar function form.

ScalarPureFunction[f_, 
    argvars_?
     VectorQ] /; (SameQ[Length[Variables[Level[f, {-1}]]], 
      Length[Flatten[argvars]]] && Length[argvars] > 1) := 
  Module[{positions, heldPart, replacements}, 
   positions = MapIndexed[List, argvars, {-1}];
   heldPart = 
    MapThread[
     Function[
      HoldForm[Part][\[FormalP], 
       Apply[Sequence, Part[SlotSequence@1, 2, All]]]], {positions}];
   replacements = Thread[argvars -> heldPart];
   ReleaseHold[
    Fold[Function[#, #2] &, {\[FormalP]}, {f /. replacements}]]];

ScalarPureFunction[f_][argvars_?VectorQ] := 
  ScalarPureFunction[f, argvars];

k = 1/2;
w = 10;
c = 1;

lagrangian = -Sqrt[2  k  x[t] - x'[t]^2/(2  k  x[t]) - y'[t]^2] - 
   w^2/2  ((x[t] - c)^2 + y[t]^2);

Px = D[lagrangian, x'[t]];
Py = D[lagrangian, y'[t]];
hamiltonian = ((Px  x'[t] + Py  y'[t]) - 
      lagrangian) /. (Solve[{px[t] == Px, py[t] == Py}, {x'[t], 
        y'[t]}] // Last) // FullSimplify;

H := ScalarPureFunction[
  hamiltonian /. {x[t] -> x, px[t] -> px, y[t] -> y, py[t] -> py}, {x,
    px, y, py}]

{a1, b1, c1, d1} = {D[hamiltonian, px[t]], 
  D[hamiltonian, 
   py[t]], -D[hamiltonian, x[t]], -D[hamiltonian, 
    y[t]]}; hameqns = {x'[t] == a1, px'[t] == c1, y'[t] == b1, 
  py'[t] == d1};

cross = y[t]; recover = {x[t], px[t]};

E=15

ResourceFunction[
          "ClickPoincarePlot2D"][hameqns, H, 15, t, 6000, cross, recover,
        {PlotStyle -> AbsolutePointSize[1], AspectRatio -> 1, 
          PlotRange -> {{0, 2}, Automatic}, PlotHighlighting -> None}]

E-15

E=40

ResourceFunction
  "ClickPoincarePlot2D"][hameqns, H, 40, t, 6000, cross, recover,
{PlotStyle -> AbsolutePointSize[1], AspectRatio -> 1, 
  PlotRange -> {{0, 2}, Automatic}, PlotHighlighting -> None}]

E-40

E=49.5

ResourceFunction
      "ClickPoincarePlot2D"][hameqns, H, 49.5, t, 6000, cross, recover,
    {PlotStyle -> AbsolutePointSize[1], AspectRatio -> 1, 
      PlotRange -> {{0, 2}, Automatic}, PlotHighlighting -> None}]

E-49.5

$\endgroup$

Not the answer you're looking for? Browse other questions tagged or ask your own question.