Skip to main content

All Questions

12 votes
1 answer
209 views

$e$ is hidden in Pascal's (binomial) triangle. What is hidden in the trinomial triangle, in the same way?

In Pascal's triangle, denote $S_n=\prod\limits_{k=0}^n\binom{n}{k}$. It can be shown that $$\lim_{n\to\infty}\frac{S_{n-1}S_{n+1}}{{S_n}^2}=e$$ What is the analogous result for the trinomial triangle? ...
Dan's user avatar
  • 25.8k
7 votes
1 answer
342 views

An infinite product for $\frac{\pi}{2}$

Please help prove $$ \begin{align} \frac{\pi}{2}&=\left(\frac{1}{2}\right)^{2/1}\left(\frac{2^{2}}{1^{1}}\right)^{4/(1\cdot 3)}\left(\frac{1}{4}\right)^{2/3}\left(\frac{2^{2}\cdot4^{4}}{1^{1}\...
tyobrien's user avatar
  • 3,557
24 votes
6 answers
6k views

Evaluating the infinite product $\prod\limits_{k=2}^\infty \left ( 1-\frac1{k^2}\right)$

Evaluate the infinite product $$\lim_{ n\rightarrow\infty }\prod_{k=2}^{n}\left ( 1-\frac{1}{k^2} \right ).$$ I can't see anything in this limit , so help me please.
Sherloek holmes's user avatar