Skip to main content

All Questions

7 votes
0 answers
194 views

The closed-form of $1-5\left(\frac{1}{2}\right)^k+9\left(\frac{1\cdot3}{2\cdot4}\right)^k-13\left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right)^k+\dots$?

(A related MSE question by P. Singh.) First define, $$F_k = 1-5\left(\frac{1}{2}\right)^k+9\left(\frac{1\cdot 3}{2\cdot 4}\right)^k-13\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^k+17\left(\...
Tito Piezas III's user avatar
3 votes
2 answers
191 views

Proving $\sum_{n=-\infty}^\infty n^2e^{-\pi n^2}=\frac{\Gamma (1/4)}{4\sqrt{2}\pi^{7/4}}$

I conjecture that $$\sum_{n=-\infty}^\infty n^2e^{-\pi n^2}=\frac{\Gamma (1/4)}{4\sqrt{2}\pi^{7/4}}$$ because the left-hand side and right-hand side agree to at least $50$ decimal places. Is the ...
Nomas2's user avatar
  • 667
9 votes
2 answers
341 views

On the cubic counterpart of Ramanujan's $\sqrt{\frac{\pi\,e}{2}} =1+\frac{1}{1\cdot3}+\frac{1}{1\cdot3\cdot5}+\frac{1}{1\cdot3\cdot5\cdot7}+\dots$?

We have Ramanujan's well-known, $$\sqrt{\frac{\pi\,e}{2}} =1+\frac{1}{1\cdot3}+\frac{1}{1\cdot3\cdot5}+\frac{1}{1\cdot3\cdot5\cdot7}+\dots\color{blue}+\,\cfrac1{1+\cfrac{1}{1+\cfrac{2}{1+\cfrac{3}{1+\...
Tito Piezas III's user avatar
4 votes
0 answers
96 views

Evaluate $\sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(2b)_n} \frac{\psi^{(0)}\left (n+ \frac{a}2+1 \right ) }{\Gamma\left (n+ \frac{a}2+1 \right ) }$

Define $$S(a,b)=\sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(2b)_n} \frac{\psi^{(0)}\left (n+ \frac{a}2+1 \right ) }{\Gamma\left (n+ \frac{a}2+1 \right ) },$$ where $\psi^{(0)}(x)=\frac{\Gamma^\prime(x)}{\...
Setness Ramesory's user avatar
0 votes
2 answers
145 views

Closed from for the series involving gamma function

Is there a closed form for the fallowing series, $$\sum_{n=1}^\infty \Gamma\left(n+\frac12+\frac12k\right)\Gamma\left(n+\frac12-\frac12k\right)\frac{x^{n}}{(2n+1)!}$$ where $k\notin\mathbb{Z}$. I ...
user avatar
17 votes
1 answer
1k views

What is $\mathcal{R}$?

First of all, I am asking this question entirely out of curiosity. It basically randomly popped out of my mind. So I am asking for the value of an infinite series. Let's call it, $\mathcal{R}=\sum_{n=...
Rounak Sarkar's user avatar
6 votes
1 answer
307 views

Closed form of $\sum_{n=1}^\infty \frac{1}{\sinh n\pi}$ in terms of $\Gamma (a)$, $a\in\mathbb{Q}$

This question and this question are about $$\sum_{n=1}^\infty \frac{1}{\cosh n\pi}=\frac{1}{2}\left(\frac{\sqrt{\pi}}{\Gamma ^2(3/4)}-1\right)$$ and $$\sum_{n=1}^\infty \frac{1}{\sinh ^2n\pi}=\frac{1}{...
Poder Rac's user avatar
  • 966
6 votes
1 answer
86 views

If $r>0$ and $r\notin \mathbb{N}$, is there a simple method to evaluate $ \sum_{n=\lceil r \rceil}^{\infty} {\binom{n}{r}^{-1}}?$

Let $r>0,r\in \mathbb{R}\setminus\mathbb{N}$. Empirically, I have noticed the following relation: $$ \sum_{n=0}^{\lfloor r \rfloor} \frac{1}{\binom{n}{r}} = - \sum_{n=\lceil r \rceil}^{\infty} \...
Integrand's user avatar
  • 8,369
15 votes
3 answers
1k views

Prove that $_4F_3\left(\frac13,\frac13,\frac23,\frac23;1,\frac43,\frac43;1\right)=\frac{\Gamma \left(\frac13\right)^6}{36 \pi ^2}$

I found an interesting problem about generalized hypergeometric series in MO, stating that: $$\, _4F_3\left(\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3};1,\frac{4}{3},\frac{4}{3};1\right)=\sum_{n=...
Infiniticism's user avatar
  • 8,654
6 votes
3 answers
319 views

Proving $\sum_{n=0}^\infty\frac{(-1)^n\Gamma(2n+a+1)}{\Gamma(2n+2)}=2^{-a/2}\Gamma(a)\sin(\frac{\pi}{4}a)$

Mathematica gives $$\sum_{n=0}^\infty\frac{(-1)^n\Gamma(2n+a+1)}{\Gamma(2n+2)}=2^{-a/2}\Gamma(a)\sin(\frac{\pi}{4}a),\quad 0<a<1$$ All I did is reindexing then using the series property $\sum_{n=...
Ali Shadhar's user avatar
  • 25.8k
1 vote
0 answers
55 views

Closed form of $\sum_{n=1}^\infty (n+k)!(a/n)^n$

I got this equality: $$\sum_{n=1}^\infty (n+k)!\left(\frac{a}{n}\right)^n=a(k+1)!\int_{0}^{1}\frac{dx}{(1+ax\ln x)^{k+2}}$$ when $|a|<e$ then, does this series have a closed form?
Ckk's user avatar
  • 37
3 votes
2 answers
398 views

How to Evaluate $\sum_{n=0}^{\infty}\frac{(-1)^n(4n+1)(2n)!^3}{2^{6n}n!^6}$

I want to Evaluate $\sum_{n=0}^{\infty}\frac{(-1)^n(4n+1)(2n)!^3}{2^{6n}n!^6}.$ I tried from arcsin(x) series and got $\frac{1-z^4}{(1+z^4)^{\frac{2}{3}}}= 1-5(\frac{1}{2})z^4+9(\frac{(1)(3)}{(2)(4)})...
Unik Sillavich's user avatar
3 votes
0 answers
84 views

Closed form for infinite series $\sum_{n=1}^\infty \prod_{j=1}^n \left[1-(\tfrac{j}{n}u+v)^2\right]^{-1} x^n$

I've been struggling to find a closed form for the following series that depends on $u$ and $v$ as parameters: $$ f(u,v,x) = \sum_{n=1}^\infty c_n x^n $$ with $$ c_n = \frac{1}{\prod_{j=1}^n \left[...
wcw's user avatar
  • 207
0 votes
0 answers
60 views

closed form of series involving gamma function

In one of my calculation, I came across the series: $$\sum_{n=0}^\infty\frac{z^{n}}{Γ(n\alpha)}$$ $0<\alpha<1$.
karen2's user avatar
  • 11
1 vote
1 answer
143 views

Series including the Gamma funtion

In one of my calculation, I came across the series: $$\sum_{n=0}^{\infty} \frac{x^n}{\Gamma(n+\alpha)}.$$ When $\alpha=1,$ this equals $e^x$ and when $\alpha=\frac{1}{2},$ this equals $\frac{1}{2\sqrt{...
Kenta S's user avatar
  • 16.8k

15 30 50 per page