2
$\begingroup$

I’m stuck with part b) of this exercise.

In this book the Heat Kernel on the circle is defined as $$H_t(x)=\sum_{ℤ }e^{-4π^2n^2t}e^{i2πnx}$$

The author gave this two proprieties as exercise and the respective hints (without introducing the Poisson summation formula)

a)$∫_{-1/2}^{1/2}|H_t(x)|^2dx$ has magnitude $1/\sqrt{t}$ as $t\longrightarrow0$
Hint: compare $\sum_{ℤ}e^{-4\pi^2n^2t}$ with $\int_{ℝ}e^{-4\pi^2x^2t}dx$
b)$\int_{-1/2}^{1/2}x^2|H_t(x)|^2dx=O(\sqrt{t})$ as $t\longrightarrow0$
Hint: majorize $x^2$ with $C(\sin\pi x)^2$ and apply the mean value theorem to $e^{-\pi x^2t}$

Part a) is quite easy (one may use Parserval’s identity and prove that the discrete infinite sum and the continuous infinite integral differ no more than 1 in absolute value), but for part b) I can’t really obtain the desired result.

Till now, I used Abel’s summation by parts formula and got that \begin{gather} H_t(x)\sin\pi x=\ \sum_{n≥0}(e^{-4\pi^2n^2t}-e^{-4\pi^2(n+1)^2t})[\sin(2n+1)\pi x] \end{gather}

The problem is that while I want $t\longrightarrow0$ in the series I have $n\longrightarrow\infty$ so I find it really difficult to estimate.

Please help me if you know anything. Thank you in advance.

$\endgroup$

1 Answer 1

1
$\begingroup$

The source code of this answer is available at my github gist.

I use a quite different method from yours.

For (1), we see that \begin{equation} \begin{aligned} I=&\int_{|x|\leq 1/2}|H_t(x)|^2 d x\\ =&\int_{|x|\leq 1/2}H_t(x)\overline{H_t(x)}d x\\ =&\int_{|x|\leq 1/2}\sum_{n}e^{-4\pi^2n^2t}e^{2\pi i n x}\sum_{k}e^{-4\pi^2k^2t}e^{-2\pi i k x}\\ =& \sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int_{|x|\leq 1/2}e^{2\pi i (n-k)x}d x\\ =& \sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\mathbb{I}({n=k})\\ =&\sum_{n}e^{-8\pi^2n^2t} \end{aligned} \end{equation} Note that \begin{equation} \begin{aligned} I=&\sum_{n}e^{-8\pi^2n^2t}=1+2\sum_{n=1}^{\infty}e^{-8\pi^2n^2t}\\ \leq& 1+2 \sum_{n=1}^{\infty}\int_{n-1}^n e^{-8\pi^2 x^2 t}d x=1+2\int_{0}^{\infty}e^{-8\pi^2 x^2 t}d x\\ =&1+\int_{-\infty}^{+\infty}e^{-8\pi^2 x^2 t}d x \end{aligned} \end{equation} by the same trick, we can show that \begin{equation} \begin{aligned} I=&\sum_{n}e^{-8\pi^2n^2t}=-1+2\sum_{n=0}^{\infty}e^{-8\pi^2n^2t}\\ \geq & -1+2 \sum_{n=0}^{\infty}\int_{n}^{n+1} e^{-8\pi^2 x^2 t}d x=-1+2\int_{0}^{\infty}e^{-8\pi^2 x^2 t}d x\\ =&-1+\int_{-\infty}^{+\infty}e^{-8\pi^2 x^2 t}d x \end{aligned} \end{equation} and by the Normal distribution $N(0,\sigma^2)$, we see that (the constant might be wrong, but it does not matter.) \begin{equation} \int_{-\infty}^{+\infty}e^{-8\pi^2 x^2 t}d x=\int\exp\left(-\frac{x^2}{2\frac{1}{16\pi^2t}}\right)d x=\sqrt{2\pi t }\cdot 4\pi=O(t^{-1/2}). \end{equation} Thus $I=O(t^{-1/2})$.

For (2),by the hint we have $c_1\sin^2(\pi x)\leq x^2\leq C_1 \sin^2(\pi x)$, for $|x|\leq 1/2$, i.e., $x^2=O(\sin^2(\pi x))$, we write $x^2=C \sin^2(\pi x)$. \begin{equation} \begin{aligned} I_2=&\int_{|x|\leq 1/2}x^2|{H_t(x)}|^2d x=C\int\sin^2(\pi x)|H_t(x)|^2d x\\ =&C\int \frac{1}{2}(1-\cos(2\pi x))\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}e^{2\pi i (n-k)x} d x\\ =&\frac{C}{2}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n-k)x}\left(1-\frac{e^{2\pi i x}+e^{-2\pi i x}}{2}\right)d x\\ =&\frac{C}{2}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n-k)x}d x\\ &-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n+1-k)x}d x\\ &-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\int e^{2\pi i (n-1-k)x}d x\\ =&\frac{C}{2}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\mathbb{I}({n=k})\\ &-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\mathbb{I}({n=k-1})\\ &-\frac{C}{4}\sum_{n}\sum_{k}e^{-4\pi^2(n^2+k^2)t}\mathbb{I}({n=k+1})\\ =&\frac{C}{2}\sum_{n}e^{-8\pi^2n^2t}-\frac{C}{4}\sum_{n}\left[e^{-4\pi^2(2n^2+2n+1)t}+e^{-4\pi^2(2n^2-2n+1)t}\right]\\ =&\frac{C}{2}\sum_{n}e^{-8\pi^2n^2t}\left[1-\frac{e^{-4\pi^2(1+2n)t}+e^{-4\pi^2(1-2n)t}}{2}\right]\\ =&\frac{C}{2}\sum_{n}e^{-8\pi^2n^2t}\left[1-e^{-4\pi^2t}\frac{e^{-8\pi^2nt}+e^{8\pi^2nt}}{2}\right]\\ \end{aligned} \end{equation} Note that $2\leq e^x +e^{-x}\leq 2 e^{|x|}$

when $0\leq x \leq \delta$, $e^x \sim 1+x$, one can see \begin{equation} 1-e^{-4\pi^2t}\frac{e^{-8\pi^2nt}+e^{8\pi^2nt}}{2}\leq 1-e^{-4\pi^2t}\leq c 4\pi^2t . \end{equation} and \begin{equation} 1-e^{-4\pi^2t}\frac{e^{-8\pi^2nt}+e^{8\pi^2nt}}{2}\geq 1-e^{-4\pi^2t}e^{8\pi^2|n|t}\geq c 4\pi^2(2|n|-1)t . \end{equation} Finally, we have \begin{equation} \begin{aligned} I_2\leq K t \sum_{n}e^{-8\pi^2n^2t}=t O(t^{-1/2})=O(t^{1/2}), \end{aligned} \end{equation} and \begin{equation} I_2\geq Kt \sum_{n}e^{-8\pi^2n^2t}(2|n|-1)=2Kt \sum_{n}|n|e^{-8\pi^2n^2t} -O(t^{1/2}) =O(t^{1/2}). \end{equation} Note that \begin{equation} \sum_{n}|n|e^{-8\pi^2n^2t} \sim\int |x|e^{-8\pi^2x^2t }d x=O(t^{-1/2}), \end{equation} which is $E(|X|)$ for $X\sim N(0,\sigma^2)$, and $E(|X|)=\sigma\sqrt{\frac{2}{\pi}}$. see this question for more details.

By far we have proved that $I_2=O(t^{1/2})$.

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .