0
$\begingroup$

Geometric distribution: $$ f_X(k) = p (1 - p)^{k-1}, \quad k = 1,2,3,\cdots $$ The expectation:

$$ \begin{align} \mathbb{E}(X) &= \sum_{k=1}^\infty k p (1 - p)^{k - 1} \\ &= \sum_{k=1}^\infty p(1-p)^{k-1} + \sum_{k=2}^\infty (k - 1) p(1-p)^{k - 1} \\ &= 1 + \sum_{k=1}^\infty k p(1-p)^k \\ &= 1 + (1 - p) \sum_{k=1}^\infty k p(1-p)^{k - 1} \\ &= 1 + (1 - p) \mathbb{E}(X) \end{align} $$

Solving for the expectation, we get $\mathbb{E}(X) = 1/p$.

Another version of Geometric distribution: $$ f_X(k) = p (1 - p)^k, \quad k = 0, 1,2,3,\cdots $$

$$ \begin{align} \mathbb{E}(X) &= \sum_{k=0}^\infty k p (1 - p)^{k} \\ &= \sum_{k=1}^\infty kp(1-p)^{k}\\ &= \sum_{k=1}^\infty (k-1)p(1-p)^{k}+\sum_{k=1}^\infty p(1-p)^{k}\\ &= (1-p)\sum_{k=1}^\infty (k-1)p(1-p)^{k-1}+\sum_{k=1}^\infty p(1-p)^{k}\\ &= (1 - p)\mathbb{E}(X) +\sum_{k=1}^\infty p(1-p)^{k} \\ &= (1 - p)\mathbb{E}(X) +\sum_{k=0}^\infty p(1-p)^{k}-p \\ &= (1 - p)\mathbb{E}(X) +1-p \\ \end{align} $$

from where we get $$\mathbb{E}(X) = (1-p)/p$$

For the variance we also have:

$$ \begin{align} \mathbb{E}(X^2) &= \sum_{k=1}^\infty k^2 p (1 - p)^{k - 1} \\ &= \sum_{k=1}^\infty k p(1-p)^{k-1} + \sum_{k=2}^\infty (k^2 - k) p(1-p)^{k - 1} \\ &= \mathbb{E}(X) + (1 - p) \sum_{k=1}^\infty (k^2 + k) p(1-p)^{k - 1} \\ &= \mathbb{E}(X) + (1 - p) \mathbb{E}(X) + (1 - p) \sum_{k=1}^\infty k^2 p(1-p)^{k-1} \\ &= \frac{2 - p}{p} + (1 - p) \mathbb{E}(X^2) \end{align} $$

Solving for the expectation, we get $\mathbb{E}(X^2) = (2 - p) / p^2$.

Finally,

$$ \mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{2 - p}{p^2} - \frac{1}{p^2} = \frac{1 - p}{p^2} $$

For the variant version of Geometric distribution: $$ f_X(k) = p (1 - p)^k, \quad k = 0, 1,2,3,\cdots $$ $$ \begin{align} \mathbb{E}(X^2) &= \sum_{k=0}^\infty k^2 p (1 - p)^{k} \\ &= \sum_{k=1}^\infty k^2 p(1-p)^{k}\\ &= \sum_{k=0}^\infty (k+1)^2 p(1-p)^{k+1}\\ &= \sum_{k=0}^\infty k^2 p(1-p)^{k+1}+2\sum_{k=0}^\infty k p(1-p)^{k+1}+\sum_{k=0}^\infty p(1-p)^{k+1}\\ &= (1-p)\mathbb{E}(X^2)+2(1-p)\mathbb{E}(X)+(1-p)\\ &= (1-p)\mathbb{E}(X^2)+2(1-p)^2/p+(1-p)\\ &= (1-p)\mathbb{E}(X^2)+\frac{2(1-p)^2}{p}+\frac{p(1-p)}{p}\\ &= (1-p)\mathbb{E}(X^2)+\frac{2-3p+p^2}{p}\\ \end{align} $$ We get $$\mathbb{E}(X^2) = \frac{2-3p+p^2}{p^2}$$ And then the variance: $$ \mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{2-3p+p^2}{p^2} - \frac{(1-p)^2}{p^2} = \frac{1 - p}{p^2} $$

Why Geometric distribution has different expectations but the same variance?

$\endgroup$

1 Answer 1

6
$\begingroup$

Because the two distributions are linked in the following way

$$Y=X-1$$

Thus using expectation property you get that

$$E(Y)=E(X)-1$$

That is

$$E(Y)=\frac{1}{p}-1=\frac{1-p}{p}$$

But, using variance property,

$$V(Y)=V(X-1)=V(X)$$

$\endgroup$

You must log in to answer this question.

Not the answer you're looking for? Browse other questions tagged .