Skip to main content
replaced http://betterexplained.com/ with https://betterexplained.com/
Source Link

This is from betterexplained.com. It's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand Pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

Pythagoras' theorem http://betterexplained.com/wp-content/uploads/pythagorean/proof1.pngPythagoras' theorem

These are similar triangles. This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why.

This explains the product rule:

betterexplained http://betterexplained.com/wp-content/uploads/derivatives/productrule.pngbetterexplained

This is from betterexplained.com. It's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand Pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

Pythagoras' theorem http://betterexplained.com/wp-content/uploads/pythagorean/proof1.png

These are similar triangles. This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why.

This explains the product rule:

betterexplained http://betterexplained.com/wp-content/uploads/derivatives/productrule.png

This is from betterexplained.com. It's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand Pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

Pythagoras' theorem

These are similar triangles. This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why.

This explains the product rule:

betterexplained

Copy edited - but it could benefit from being MathJax'ed.
Source Link

This is from betterexplained.com, it's. It's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand pythagoras'Pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

pythagoras'Pythagoras' theorem http://betterexplained.com/wp-content/uploads/pythagorean/proof1.png

These are similar triangles This. This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why.

This explains the product rule.:

betterexplained http://betterexplained.com/wp-content/uploads/derivatives/productrule.png

This is from betterexplained.com, it's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

pythagoras' theorem http://betterexplained.com/wp-content/uploads/pythagorean/proof1.png

These are similar triangles This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why

This explains the product rule.

betterexplained http://betterexplained.com/wp-content/uploads/derivatives/productrule.png

This is from betterexplained.com. It's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand Pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

Pythagoras' theorem http://betterexplained.com/wp-content/uploads/pythagorean/proof1.png

These are similar triangles. This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why.

This explains the product rule:

betterexplained http://betterexplained.com/wp-content/uploads/derivatives/productrule.png

Source Link
Kevin
  • 319
  • 1
  • 4
  • 12

This is from betterexplained.com, it's a really cool website with lots of intuitive explanations of maths concepts. This helped me understand pythagoras' theorem. Actually my go-to website for intuitive explanations of concepts.

pythagoras' theorem http://betterexplained.com/wp-content/uploads/pythagorean/proof1.png

These are similar triangles This diagram also makes something very clear:

Area (Big) = Area (Medium) + Area (Small) Makes sense, right? The smaller triangles were cut from the big one, so the areas must add up. And the kicker: because the triangles are similar, they have the same area equation.

Let's call the long side c (5), the middle side b (4), and the small side a (3). Our area equation for these triangles is:

Area = F * hypotenuse^2

where F is some area factor (6/25 or .24 in this case; the exact number doesn't matter). Now let's play with the equation:

Area (Big) = Area (Medium) + Area (Small)

F c^2 = F b^2 + F a^2

Divide by F on both sides and you get:

c^2 = b^2 + a^2

Which is our famous theorem! You knew it was true, but now you know why

This explains the product rule.

betterexplained http://betterexplained.com/wp-content/uploads/derivatives/productrule.png

Post Made Community Wiki by Kevin