Skip to main content
Fixed typos in the last equation
Source Link
Américo Tavares
  • 38.8k
  • 13
  • 108
  • 246

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1$$

and

$$S=\frac{n(n+1)(2n+1)}{6},$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=1}^{n}\binom{k}{1}+2\binom{k}{2} =\sum_{k=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1$$

and

$$S=\frac{n(n+1)(2n+1)}{6},$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1$$

and

$$S=\frac{n(n+1)(2n+1)}{6},$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=1}^{n}\binom{k}{1}+2\binom{k}{2} =\sum_{k=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

deleted 1 characters in body
Source Link
Américo Tavares
  • 38.8k
  • 13
  • 108
  • 246

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1.$$$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1$$

and

$$S=\frac{n(n+1)(2n+1)}{6}.$$$$S=\frac{n(n+1)(2n+1)}{6},$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1.$$

and

$$S=\frac{n(n+1)(2n+1)}{6}.$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1$$

and

$$S=\frac{n(n+1)(2n+1)}{6},$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

added 49 characters in body
Source Link
Américo Tavares
  • 38.8k
  • 13
  • 108
  • 246

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$ cancels, the $2^3$$3^3$, etc$(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1.$$

and

$$S=\frac{n(n+1)(2n+1)}{6}.$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$ cancels $2^3$, etc.. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1.$$

and

$$S=\frac{n(n+1)(2n+1)}{6}.$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

Proof 1. (Exercise 2.5.1 in Dias Agudo, Cândido da Silva, Matemáticas Gerais III). Let $S:=\sum_{k=1}^{n}k^{2}$. Consider $(1+a)^{3}=1+3a+3a^{2}+a^{3}$ and sum $(1+a)^{3}$ for $a=1,2,\ldots ,n$:

$$\begin{eqnarray*} (1+1)^{3} &=&1+3\cdot 1+3\cdot 1^{2}+1^{3} \\ (1+2)^{3} &=&1+3\cdot 2+3\cdot 2^{2}+2^{3} \\ (1+3)^{3} &=&1+3\cdot 3+3\cdot 3^{2}+3^{3} \\ &&\cdots \\ (1+n)^{3} &=&1+3\cdot n+3\cdot n^{2}+n^{3} \end{eqnarray*}$$

The term $(1+1)^3$ on the LHs of the 1st sum cancels the term $2^3$ on the RHS of the 2nd, $(1+2)^3$, the $3^3$, $(1+3)^4$, the $4^3$, ..., and $(1+n-1)^3$ cancels $n^3$. Hence

$$(1+n)^{3}=n+3\left( 1+2+\ldots +n\right) +3S+1.$$

and

$$S=\frac{n(n+1)(2n+1)}{6}.$$

because $1+2+\ldots +n=\dfrac{n\left( n+1\right) }{2}$.

Proof 2. (Exercise 1.42 in Balakrishnan, Combinatorics, Schaum's Outline of Combinatorics). From

$$\binom{k}{1}+2\binom{k}{2}=k+2\frac{k\left( k-1\right) }{2}=k^{2},$$

we get

$$\begin{eqnarray*} S &:&=\sum_{k=1}^{n}k^{2}=\sum_{k=0}^{n}\binom{k}{1}+2\binom{k}{2}% =\sum_{i=1}^{n}\binom{k}{1}+2\sum_{k=1}^{n}\binom{k}{2} \\ &=&\binom{n+1}{2}+2\binom{n+1}{3} \\ &=&\frac{n\left( n+1\right) \left( 2n+1\right) }{6}. \end{eqnarray*}$$

added 383 characters in body
Source Link
Américo Tavares
  • 38.8k
  • 13
  • 108
  • 246
Loading
added 383 characters in body
Source Link
Américo Tavares
  • 38.8k
  • 13
  • 108
  • 246
Loading
Source Link
Américo Tavares
  • 38.8k
  • 13
  • 108
  • 246
Loading