Skip to main content
added 32 characters in body
Source Link
Surb
  • 56k
  • 11
  • 65
  • 115

Thank you to Surb for that hint.

$$\sum_{n=1}^{k}\frac{1}{n^2+n}=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}$$ $$=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1}$$ $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}...+\frac{1}{k-1}+\frac{1}{k}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1})$$$$\begin{align*} \sum_{n=1}^{k}\frac{1}{n^2+n}&=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}\\ &=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1} \\ &=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k-1}+\frac{1}{k}\\\\ &\phantom{\frac{1}{1}+}-\Big(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1}\Big)\end{align*}$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{k}{k+1}$.

Thank you to Surb for that hint.

$$\sum_{n=1}^{k}\frac{1}{n^2+n}=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}$$ $$=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1}$$ $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}...+\frac{1}{k-1}+\frac{1}{k}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1})$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{k}{k+1}$.

Thank you to Surb for that hint. $$\begin{align*} \sum_{n=1}^{k}\frac{1}{n^2+n}&=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}\\ &=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1} \\ &=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k-1}+\frac{1}{k}\\\\ &\phantom{\frac{1}{1}+}-\Big(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1}\Big)\end{align*}$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{k}{k+1}$.

Formatting
Source Link

Thank you to Surb for that hint.

$$\sum_{n=1}^{k}\frac{1}{n^2+n}=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}$$ $$=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1}$$ $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}...+\frac{1}{k-1}+\frac{1}{k}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1})$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{1}{k+1}$$\frac{1}{1}-\frac{1}{k+1}=\frac{k}{k+1}$.

Thank you to Surb for that hint.

$$\sum_{n=1}^{k}\frac{1}{n^2+n}=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}$$ $$=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1}$$ $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}...+\frac{1}{k-1}+\frac{1}{k}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1})$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{1}{k+1}$.

Thank you to Surb for that hint.

$$\sum_{n=1}^{k}\frac{1}{n^2+n}=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}$$ $$=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1}$$ $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}...+\frac{1}{k-1}+\frac{1}{k}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1})$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{k}{k+1}$.

Source Link

Thank you to Surb for that hint.

$$\sum_{n=1}^{k}\frac{1}{n^2+n}=\sum_{n=1}^{k}\frac{1}{n}-\frac{1}{n+1}$$ $$=\sum_{n=1}^{k}\frac{1}{n}-\sum_{n=1}^{k}\frac{1}{n+1}$$ $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}...+\frac{1}{k-1}+\frac{1}{k}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{k-1}+\frac{1}{k}+\frac{1}{k+1})$$

Everything cancels out except for $\frac{1}{1}-\frac{1}{k+1}=\frac{1}{k+1}$.