Skip to main content
add some explanation
Source Link
robjohn
  • 347.8k
  • 37
  • 477
  • 869

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ SquaringExplanation:
$\text{(2a):}$ rewrite double factorials in terms of factorials
$\text{(2b):}$ $\binom{2n}{n}=\frac{(2n)!}{n!n!}$
$\text{(2c):}$ apply $(1)$

Squaring $(2)$ and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$ Evaluate the limit with the Squeeze Theorem.

enter image description here

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

enter image description here

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Explanation:
$\text{(2a):}$ rewrite double factorials in terms of factorials
$\text{(2b):}$ $\binom{2n}{n}=\frac{(2n)!}{n!n!}$
$\text{(2c):}$ apply $(1)$

Squaring $(2)$ and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$ Evaluate the limit with the Squeeze Theorem.

enter image description here

improve image
Source Link
robjohn
  • 347.8k
  • 37
  • 477
  • 869

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

enter image description hereenter image description here

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

enter image description here

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

enter image description here

add an image
Source Link
robjohn
  • 347.8k
  • 37
  • 477
  • 869

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

enter image description here

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

Inequality $(9)$ in this answer says that $$ \frac{4^n}{\sqrt{\pi\!\left(n+\frac14+\frac1{16n+12}\right)}}\le\binom{2n}{n}\le\frac{4^n}{\sqrt{\pi\!\left(n+\frac14\right)}}\tag1 $$ Therefore, $$ \begin{align} \frac{\color{#C00}{(2n)!!}}{\color{#090}{(2n-1)!!}} &=\frac{\color{#C00}{2^nn!}\color{#090}{2^nn!}}{\color{#090}{(2n)!}}\tag{2a}\\[3pt] &=\frac{4^n}{\binom{2n}{n}}\tag{2b}\\ &\in\left[\sqrt{\pi\!\left(n+\tfrac14\right)},\sqrt{\pi\!\left(n+\tfrac14+\tfrac1{16n+12}\right)}\right]\tag{2c} \end{align} $$ Squaring and subtracting $\pi n$ gives $$ \frac\pi4\le\left(\frac{(2n)!!}{(2n-1)!!}\right)^2-\pi n\le\frac\pi4+\frac\pi{16n+12}\tag3 $$

enter image description here

account for change to linked answer
Source Link
robjohn
  • 347.8k
  • 37
  • 477
  • 869
Loading
Source Link
robjohn
  • 347.8k
  • 37
  • 477
  • 869
Loading