Skip to main content
added 173 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $(r,\theta)=(r(t),\theta(t))$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$, $(r(t),\theta(t))=(2C\cos(t),t)$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}=\frac{\mathrm dr}{r\mathrm d\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $(r,\theta)=(r(t),\theta(t))$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$, $(r(t),\theta(t))=(2C\cos(t),t)$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $(r,\theta)=(r(t),\theta(t))$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$, $(r(t),\theta(t))=(2C\cos(t),t)$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}=\frac{\mathrm dr}{r\mathrm d\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

deleted 14 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $\mathbf v(t)=r(t)\mathbf{\hat r}$$(r,\theta)=(r(t),\theta(t))$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$

$\mathbf v(t)=2C\cos(t)\mathbf{\hat r}$, $(r(t),\theta(t))=(2C\cos(t),t)$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $\mathbf v(t)=r(t)\mathbf{\hat r}$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$

$\mathbf v(t)=2C\cos(t)\mathbf{\hat r}$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $(r,\theta)=(r(t),\theta(t))$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$, $(r(t),\theta(t))=(2C\cos(t),t)$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

edited body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34

Edited (Not the slope, but the orthogonal direction)

The correct ifis the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $\mathbf v(t)=r(t)\mathbf{\hat r}+\theta(t)\mathbf{\hat{\theta}}$$\mathbf v(t)=r(t)\mathbf{\hat r}$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$

$\mathbf v(t)=2C\cos(t)\mathbf{\hat r}+t\mathbf{\hat{\theta}}$$\mathbf v(t)=2C\cos(t)\mathbf{\hat r}$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

Edited (Not the slope, but the orthogonal direction)

The correct if the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $\mathbf v(t)=r(t)\mathbf{\hat r}+\theta(t)\mathbf{\hat{\theta}}$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$

$\mathbf v(t)=2C\cos(t)\mathbf{\hat r}+t\mathbf{\hat{\theta}}$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

Edited (Not the slope, but the orthogonal direction)

The correct is the one from your textbook. In polars, the perpendicular is got by means $\dfrac{1}{r}\dfrac{\mathrm dr}{\mathrm d\theta}\to-r\dfrac{\mathrm d\theta}{\mathrm dr}$

Added

Suppose the position vector for each curve points with parameter $t$: $\mathbf v(t)=r(t)\mathbf{\hat r}$

It's known the vector tangent to this curve is:

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat r}+\frac{\mathrm d\mathbf\theta}{\mathrm dt}r\mathbf{\hat\theta}$$

An orthogonal vector to this one is:

$$\mathbf v_p=r\frac{\mathrm d\mathbf \theta}{\mathrm dt}\mathbf{\hat r}-\frac{\mathrm dr}{\mathrm dt}\mathbf{\hat\theta}$$

You can now consider eliminating the parameter for the curve:

$$\frac{\mathrm dr/\mathrm dt}{r\mathrm d\mathbf \theta/\mathrm dt}=\frac{\mathrm dr}{r\mathrm d\theta}=f(r,\theta)$$

Now,

$$-\frac{r\mathrm d\theta}{\mathrm dr}=f(r,\theta)$$

is true of the orthogonal curves to the original one.


$r=2C\cos\theta$, $t=\theta$

$\mathbf v(t)=2C\cos(t)\mathbf{\hat r}$

$$\frac{\mathrm d\mathbf v}{\mathrm dt}=-2C\sin(t)\mathbf{\hat r}+1·2C\cos(t)\mathbf{\hat\theta}$$

$$\frac{\mathrm dr}{r\mathrm d\theta}=\frac{-2C\sin(t)}{2C\cos(t)}=\frac{-\sin\theta}{\cos\theta}$$

and

$$\frac{r\mathrm d\theta}{\mathrm dr}=\frac{\sin\theta}{\cos\theta}$$

added 318 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading
added 318 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading
added 1 character in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading
added 851 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading
deleted 11 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading
added 79 characters in body
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading
Post Undeleted by Rafa Budría
Post Deleted by Rafa Budría
Source Link
Rafa Budría
  • 7.4k
  • 1
  • 17
  • 34
Loading