Skip to main content

Firstly, calculate the sum $S=\sum_{k=1}^n k(k+1)$ wichwhich is:

$S=1\cdot 2+2\cdot 3+ \cdots +n(n+1)$, multiplaying

multiplying $S$ by 3

we we get:

$3S=1\cdot 2\cdot 3+2\cdot 3\cdot (4-1)+3\cdot 4\cdot (5-2)+ \cdots +n\cdot (n+1)\cdot (n+2-(n-1))$

$3S=1 · 2 · 3 + 2 · 3 · 4 − 1 · 2 · 3 + 3 · 4 · 5 − 2 · 3 · 4 + · · · + n(n + 1)(n + 2) − (n − 1)n(n + 1)$

thisThis telescoping series collapses to yield:

$$3S=n(n+1)(n+2)$$

$$S=\frac{n(n+1)(n+2)}{3}$$

InOn the other side we have:

\begin{alignat*}{2} &\sum_{k=1}^n k(k+1)&&=\sum_{k=1}^n k^2+k \\ & &&=\sum_{k=1}^n k^2+\sum_{k=1}^n k \\ &\frac{n(n+1)(n+2)}{3}&&=\sum_{k=1}^n k^2+\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(n+2)}{3}-\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(2n+1)}{6} \end{alignat*}

Firstly, calculate the sum $S=\sum_{k=1}^n k(k+1)$ wich is

$S=1\cdot 2+2\cdot 3+ \cdots +n(n+1)$, multiplaying $S$ by 3

we get

$3S=1\cdot 2\cdot 3+2\cdot 3\cdot (4-1)+3\cdot 4\cdot (5-2)+ \cdots +n\cdot (n+1)\cdot (n+2-(n-1))$

$3S=1 · 2 · 3 + 2 · 3 · 4 − 1 · 2 · 3 + 3 · 4 · 5 − 2 · 3 · 4 + · · · + n(n + 1)(n + 2) − (n − 1)n(n + 1)$

this telescoping series collapses to yield

$$3S=n(n+1)(n+2)$$

$$S=\frac{n(n+1)(n+2)}{3}$$

In other side we have

\begin{alignat*}{2} &\sum_{k=1}^n k(k+1)&&=\sum_{k=1}^n k^2+k \\ & &&=\sum_{k=1}^n k^2+\sum_{k=1}^n k \\ &\frac{n(n+1)(n+2)}{3}&&=\sum_{k=1}^n k^2+\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(n+2)}{3}-\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(2n+1)}{6} \end{alignat*}

Firstly, calculate the sum $S=\sum_{k=1}^n k(k+1)$ which is:

$S=1\cdot 2+2\cdot 3+ \cdots +n(n+1)$,

multiplying $S$ by 3 we get:

$3S=1\cdot 2\cdot 3+2\cdot 3\cdot (4-1)+3\cdot 4\cdot (5-2)+ \cdots +n\cdot (n+1)\cdot (n+2-(n-1))$

$3S=1 · 2 · 3 + 2 · 3 · 4 − 1 · 2 · 3 + 3 · 4 · 5 − 2 · 3 · 4 + · · · + n(n + 1)(n + 2) − (n − 1)n(n + 1)$

This telescoping series collapses to yield:

$$3S=n(n+1)(n+2)$$

$$S=\frac{n(n+1)(n+2)}{3}$$

On the other side we have:

\begin{alignat*}{2} &\sum_{k=1}^n k(k+1)&&=\sum_{k=1}^n k^2+k \\ & &&=\sum_{k=1}^n k^2+\sum_{k=1}^n k \\ &\frac{n(n+1)(n+2)}{3}&&=\sum_{k=1}^n k^2+\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(n+2)}{3}-\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(2n+1)}{6} \end{alignat*}

Source Link

Firstly, calculate the sum $S=\sum_{k=1}^n k(k+1)$ wich is

$S=1\cdot 2+2\cdot 3+ \cdots +n(n+1)$, multiplaying $S$ by 3

we get

$3S=1\cdot 2\cdot 3+2\cdot 3\cdot (4-1)+3\cdot 4\cdot (5-2)+ \cdots +n\cdot (n+1)\cdot (n+2-(n-1))$

$3S=1 · 2 · 3 + 2 · 3 · 4 − 1 · 2 · 3 + 3 · 4 · 5 − 2 · 3 · 4 + · · · + n(n + 1)(n + 2) − (n − 1)n(n + 1)$

this telescoping series collapses to yield

$$3S=n(n+1)(n+2)$$

$$S=\frac{n(n+1)(n+2)}{3}$$

In other side we have

\begin{alignat*}{2} &\sum_{k=1}^n k(k+1)&&=\sum_{k=1}^n k^2+k \\ & &&=\sum_{k=1}^n k^2+\sum_{k=1}^n k \\ &\frac{n(n+1)(n+2)}{3}&&=\sum_{k=1}^n k^2+\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(n+2)}{3}-\frac{n(n+1)}{2} \\ &\sum_{k=1}^n k^2&&=\frac{n(n+1)(2n+1)}{6} \end{alignat*}