Skip to main content
added 26 characters in body
Source Link
Jack D'Aurizio
  • 355.4k
  • 41
  • 385
  • 834

I have found that the fourierFourier cosine series from $({-\pi},{\pi})$ of the function $f(x)=cosh(x)$$f(x)=\cosh(x)$ is

$$ \frac{2sinh({\pi})}{\pi}[1+ \sum_{n\: =\: 1}^{\infty}\:\ \frac{(-1)^n}{n^2+1}cos(nx)]$$$$ \frac{2\sinh({\pi})}{\pi}\left[\frac{1}{2}+ \sum_{n\: =\: 1}^{\infty}\:\ \frac{(-1)^n}{n^2+1}\cos(nx)\right]$$

How do I use this to show:

$$ \sum_{n\: =\: 1}^{\infty}\:\ \frac{1}{n^2+1}= \frac{{\pi}coth({\pi})-1}{2}$$$$ \sum_{n\: =\: 1}^{\infty}\:\ \frac{1}{n^2+1}= \frac{{\pi}\coth({\pi})-1}{2}$$

I have no idea really, the $coth{\pi}$$\coth{\pi}$ has thrown me off.

I have found that the fourier cosine series from $({-\pi},{\pi})$ of the function $f(x)=cosh(x)$ is

$$ \frac{2sinh({\pi})}{\pi}[1+ \sum_{n\: =\: 1}^{\infty}\:\ \frac{(-1)^n}{n^2+1}cos(nx)]$$

How do I use this to show:

$$ \sum_{n\: =\: 1}^{\infty}\:\ \frac{1}{n^2+1}= \frac{{\pi}coth({\pi})-1}{2}$$

I have no idea really, the $coth{\pi}$ has thrown me off

I have found that the Fourier cosine series from $({-\pi},{\pi})$ of the function $f(x)=\cosh(x)$ is

$$ \frac{2\sinh({\pi})}{\pi}\left[\frac{1}{2}+ \sum_{n\: =\: 1}^{\infty}\:\ \frac{(-1)^n}{n^2+1}\cos(nx)\right]$$

How do I use this to show:

$$ \sum_{n\: =\: 1}^{\infty}\:\ \frac{1}{n^2+1}= \frac{{\pi}\coth({\pi})-1}{2}$$

I have no idea really, the $\coth{\pi}$ has thrown me off.

Source Link
sean
  • 113
  • 5

How do I find the solution to this summation after computing the following power series?

I have found that the fourier cosine series from $({-\pi},{\pi})$ of the function $f(x)=cosh(x)$ is

$$ \frac{2sinh({\pi})}{\pi}[1+ \sum_{n\: =\: 1}^{\infty}\:\ \frac{(-1)^n}{n^2+1}cos(nx)]$$

How do I use this to show:

$$ \sum_{n\: =\: 1}^{\infty}\:\ \frac{1}{n^2+1}= \frac{{\pi}coth({\pi})-1}{2}$$

I have no idea really, the $coth{\pi}$ has thrown me off