Skip to main content
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
Bumped by Community user
added 3 characters in body
Source Link
Oliver
  • 604
  • 3
  • 14

The indicator function (random variable) for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A(x) =\begin{cases} 1 & \text{if }x \in A \\ 0 & \text{if }x \notin A. \end{cases}$

Consider $N$ dependent events $A_1,A_2,\cdots,A_N \subset \Omega.$$A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$\Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a}\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$$\begin{align} \Pr \{A_1 \leq a,A_2 \leq a\} &= E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+\operatorname{Cov}\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)\end{align}$$

The indicator function (random variable) for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A(x) =\begin{cases} 1 & \text{if }x \in A \\ 0 & \text{if }x \notin A. \end{cases}$

Consider $N$ dependent events $A_1,A_2,\cdots,A_N \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$\Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a}\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$$\begin{align} \Pr \{A_1 \leq a,A_2 \leq a\} &= E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+\operatorname{Cov}\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)\end{align}$$

The indicator function for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A(x) =\begin{cases} 1 & \text{if }x \in A \\ 0 & \text{if }x \notin A. \end{cases}$

Consider $N$ dependent events $A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$\Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a}\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$$\begin{align} \Pr \{A_1 \leq a,A_2 \leq a\} &= E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+\operatorname{Cov}\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)\end{align}$$

format cleanup
Source Link
Cameron Buie
  • 103.7k
  • 9
  • 103
  • 226

The indicator function (random variable) for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A =\left\{ \begin{array}{cc} 1 & if~~x \in A \\ 0 & if~~x \notin A \end{array} \right.$$ \mathbf{1}_A(x) =\begin{cases} 1 & \text{if }x \in A \\ 0 & \text{if }x \notin A. \end{cases}$

Consider $N$ dependent events $A_1,A_2,\cdots,A_N \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a})\right].$$\Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a}\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$ \Pr \{A_1 \leq a,A_2 \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right] =E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+Cov\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)$$$\begin{align} \Pr \{A_1 \leq a,A_2 \leq a\} &= E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+\operatorname{Cov}\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)\end{align}$$

The indicator function (random variable) for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A =\left\{ \begin{array}{cc} 1 & if~~x \in A \\ 0 & if~~x \notin A \end{array} \right.$

Consider $N$ dependent events $A_1,A_2,\cdots,A_N \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a})\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$ \Pr \{A_1 \leq a,A_2 \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right] =E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+Cov\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)$

The indicator function (random variable) for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A(x) =\begin{cases} 1 & \text{if }x \in A \\ 0 & \text{if }x \notin A. \end{cases}$

Consider $N$ dependent events $A_1,A_2,\cdots,A_N \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$\Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a}\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$$\begin{align} \Pr \{A_1 \leq a,A_2 \leq a\} &= E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]\\ &=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+\operatorname{Cov}\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)\end{align}$$

Source Link
Oliver
  • 604
  • 3
  • 14

Indicator function property

The indicator function (random variable) for a probability event $A \subset \Omega$ is given by

$ \mathbf{1}_A =\left\{ \begin{array}{cc} 1 & if~~x \in A \\ 0 & if~~x \notin A \end{array} \right.$

Consider $N$ dependent events $A_1,A_2,\cdots,A_N \subset \Omega.$ Now, we want to evaluate the probability $ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\}$, which can be written in terms of the indicator functions as

$ \Pr \{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a,\cdots,A_N \leq a})\right].$ How to arrive at the next step in terms of covariance of the indicator random variables?

Example: Consider the 2 events case. Then,

$ \Pr \{A_1 \leq a,A_2 \leq a\} = E \left[ \mathbf{1}_{A_1 \leq a,A_2 \leq a}\right] =E \left[ \mathbf{1}_{A_1 \leq a} \mathbf{1}_{A_2 \leq a}\right]=E \left[ \mathbf{1}_{A_1 \leq a} \right] E \left[ \mathbf{1}_{A_2 \leq a}\right]+Cov\left(\mathbf{1}_{A_1 \leq a},\mathbf{1}_{A_2 \leq a} \right)$