SlideShare una empresa de Scribd logo
Electroiman
   Un electroimán es un tipo de imán en el que
    el campo magnético se produce mediante el
    flujo de una corriente eléctrica, desapareciendo
    en cuanto cesa dicha corriente.
   En 1819, el físico danés Hans Christian
    Ørsted descubrió que una corriente eléctrica que
    circula por un conductor produce un efecto
    magnético que puede ser detectado con la
    ayuda de una brújula. Basado en sus
    observaciones, el electricista británico William
    Sturgeon inventó el electroimán en 1825.
   electroimán era un trozo de hierro con forma
    de herradura envuelto por una bobina
    enrollada sobre él. Sturgeon demostró su
    potencia levantando 4 kg con un trozo de
    hierro de 200 g envuelto en cables por los que
    hizo circular la corriente de una batería.
    Sturgeon podía regular su electroimán, lo que
    supuso el principio del uso de la energía
    eléctrica en máquinas útiles y controlables
   El tipo más simple de electroimán es un trozo de
    alambre enrollado. Una bobina con forma de
    tubo recto (parecido a un tornillo) se
    llama solenoide, y cuando además se curva de
    forma que los extremos coincidan se
    denomina toroide. Pueden producirse campos
    magnéticos mucho más fuertes si se sitúa un
    «núcleo» de
    material paramagnético oferromagnético (norm
    almente hierro dulce o ferrita, aunque también
    se utiliza el llamadoacero eléctrico) dentro de la
    bobina.
   Los campos magnéticos generados por
    bobinas se orientan según la regla de la mano
    derecha. Si los dedos de la mano derecha se
    cierran en torno a la dirección de la corriente
    que circula por la bobina, el pulgar indica la
    dirección del campo dentro de la misma. El
    lado del imán del que salen las líneas de
    campo se define como «polo norte».
   Además, dentro de la bobina se crean
    corrientes inducidas cuando ésta está
    sometida a un flujo variable. Estas corrientes
    son llamadas corrientes de Foucault y en
    general son indeseables, puesto que
    calientan el núcleo y provocan una pérdida de
    potencia
Electroiman
   La principal ventaja de un electroimán sobre
    un imán permanente es que el campo
    magnético puede ser rápidamente
    manipulado en un amplio rango controlando
    la cantidad de corriente eléctrica. Sin
    embargo, se necesita una fuente continua de
    energía eléctrica para mantener el campo.
   Cuando una corriente pasa por la bobina,
    pequeñas regiones magnéticas dentro del
    material, llamadas dominios magnéticos, se
    alinean con el campo aplicado, haciendo que
    la fuerza del campo magnético aumente. Si la
    corriente se incrementa, todos los dominios
   . Este fenómeno, llamado remanencia, se
    debe a la histéresis del material. Aplicar
    una corriente alterna decreciente a la bobina,
    retirar el núcleo y golpearlo o calentarlo por
    encima de su punto de Curiereorientará los
    dominios, haciendo que el campo residual se
    debilite o desaparezca.
   En aplicaciones donde no se necesita un
    campo magnético variable, los imanes
    permanentes suelen ser superiores. Además,
    es posible fabricar imanes permanentes que
    producen campos magnéticos más fuertes
    que un electroimán de tamaño similar.
Los electroimanes se usan en muchas situaciones
en las que se necesita un campo magnético variable
rápida o fácilmente. Muchas de estas aplicaciones
implican la deflección de haces de partículas
cargadas, como en los casos del tubo de rayos
catódicos y elespectrómetro de masa
Los electroimanes se usan en los motores
eléctricos rotatorios para producir un campo
magnético rotatorio y en los motores
linealespara producir un campo magnético
itinerante que impulse la armadura. Aunque la
plata es el mejor conductor de la electricidad, el
cobre es usado más a menudo debido a su
relativo bajo costo, y a veces se emplea aluminio
para reducir el peso
Los electroimanes son los componentes
esenciales de muchos interruptores, siendo
usados en los frenos y embragues
electromagnéticos de los automóviles. En
algunos tranvías, los frenos electromagnéticos
se adhieren directamente a los rieles. Se usan
electroimanes muy potentes en grúas para
levantar pesados bloques de hierro y acero, y
para separar magnéticamente metales
en chatarrerías y centros de reciclaje
Electroiman
   Calcular la fuerza sobre
    materiales ferromagnéticos es, en general,
    bastante complejo. Esto se debe a las líneas
    de campo de contorno y a las complejas
    geometrías. Puede simularse usando análisis
    de elementos finitos
   Sin embargo, es posible estimar la fuerza
    máxima bajo condiciones específicas. Si el
    campo magnético está confinado dentro de
    un material de alta permeabilidad, como es el
    caso de ciertas aleaciones de acero, la fuerza
    máxima
   FORMULAS
 Donde:
 F es la fuerza en newtons;
 B es el campo magnético en teslas;
 A es el área de las caras de los polos en m²;
  es la permeabilidad magnética del espacio libre.
 En el caso del espacio libre (aire), , siendo la
  fuerza por unidad de área (presión):
 , para B = 1 tesla
 , para B = 2 teslas
 En un circuito magnético cerrado:
Electroiman

Más contenido relacionado

Electroiman

  • 2. Un electroimán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente.  En 1819, el físico danés Hans Christian Ørsted descubrió que una corriente eléctrica que circula por un conductor produce un efecto magnético que puede ser detectado con la ayuda de una brújula. Basado en sus observaciones, el electricista británico William Sturgeon inventó el electroimán en 1825.
  • 3. electroimán era un trozo de hierro con forma de herradura envuelto por una bobina enrollada sobre él. Sturgeon demostró su potencia levantando 4 kg con un trozo de hierro de 200 g envuelto en cables por los que hizo circular la corriente de una batería. Sturgeon podía regular su electroimán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables
  • 4. El tipo más simple de electroimán es un trozo de alambre enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético oferromagnético (norm almente hierro dulce o ferrita, aunque también se utiliza el llamadoacero eléctrico) dentro de la bobina.
  • 5. Los campos magnéticos generados por bobinas se orientan según la regla de la mano derecha. Si los dedos de la mano derecha se cierran en torno a la dirección de la corriente que circula por la bobina, el pulgar indica la dirección del campo dentro de la misma. El lado del imán del que salen las líneas de campo se define como «polo norte».
  • 6. Además, dentro de la bobina se crean corrientes inducidas cuando ésta está sometida a un flujo variable. Estas corrientes son llamadas corrientes de Foucault y en general son indeseables, puesto que calientan el núcleo y provocan una pérdida de potencia
  • 8. La principal ventaja de un electroimán sobre un imán permanente es que el campo magnético puede ser rápidamente manipulado en un amplio rango controlando la cantidad de corriente eléctrica. Sin embargo, se necesita una fuente continua de energía eléctrica para mantener el campo.
  • 9. Cuando una corriente pasa por la bobina, pequeñas regiones magnéticas dentro del material, llamadas dominios magnéticos, se alinean con el campo aplicado, haciendo que la fuerza del campo magnético aumente. Si la corriente se incrementa, todos los dominios
  • 10. . Este fenómeno, llamado remanencia, se debe a la histéresis del material. Aplicar una corriente alterna decreciente a la bobina, retirar el núcleo y golpearlo o calentarlo por encima de su punto de Curiereorientará los dominios, haciendo que el campo residual se debilite o desaparezca.
  • 11. En aplicaciones donde no se necesita un campo magnético variable, los imanes permanentes suelen ser superiores. Además, es posible fabricar imanes permanentes que producen campos magnéticos más fuertes que un electroimán de tamaño similar.
  • 12. Los electroimanes se usan en muchas situaciones en las que se necesita un campo magnético variable rápida o fácilmente. Muchas de estas aplicaciones implican la deflección de haces de partículas cargadas, como en los casos del tubo de rayos catódicos y elespectrómetro de masa
  • 13. Los electroimanes se usan en los motores eléctricos rotatorios para producir un campo magnético rotatorio y en los motores linealespara producir un campo magnético itinerante que impulse la armadura. Aunque la plata es el mejor conductor de la electricidad, el cobre es usado más a menudo debido a su relativo bajo costo, y a veces se emplea aluminio para reducir el peso
  • 14. Los electroimanes son los componentes esenciales de muchos interruptores, siendo usados en los frenos y embragues electromagnéticos de los automóviles. En algunos tranvías, los frenos electromagnéticos se adhieren directamente a los rieles. Se usan electroimanes muy potentes en grúas para levantar pesados bloques de hierro y acero, y para separar magnéticamente metales en chatarrerías y centros de reciclaje
  • 16. Calcular la fuerza sobre materiales ferromagnéticos es, en general, bastante complejo. Esto se debe a las líneas de campo de contorno y a las complejas geometrías. Puede simularse usando análisis de elementos finitos
  • 17. Sin embargo, es posible estimar la fuerza máxima bajo condiciones específicas. Si el campo magnético está confinado dentro de un material de alta permeabilidad, como es el caso de ciertas aleaciones de acero, la fuerza máxima
  • 18. FORMULAS
  • 19.  Donde:  F es la fuerza en newtons;  B es el campo magnético en teslas;  A es el área de las caras de los polos en m²;  es la permeabilidad magnética del espacio libre.  En el caso del espacio libre (aire), , siendo la fuerza por unidad de área (presión):  , para B = 1 tesla  , para B = 2 teslas  En un circuito magnético cerrado: