0
\$\begingroup\$

The given expression describes a piecewise function of voltage u(t) across a circuit element with respect to time and is defined over four intervals:

$$ u(t)= \begin{cases} V_{0} \frac{t}{(2T)} &\text{for \(0 \leq t \leq 2T)\)}\\ V_{0} &\text{for \(2T \leq t \leq 3T)\)}\\ -V_{0} &\text{for \(3T \leq t \leq 4T)\)}\\ \frac{V_{0}}{2}(\frac{t}{T}-6) &\text{for \(4T \leq t \leq 8T)\)} \end{cases} $$

for $$0 < t \leq 2T$$

The expression $$i(t)=i(0)+\frac{1}{L} \int_{0}^{t} V_{0}\frac{t}{2T}dt$$ is a relationship between the current i(t) and the voltage V_0 over time for an inductor with inductance L.

Doing the math (if I am correct) I take:

\begin{align*} \frac{1}{L} &* \int_{0}^{t} V_{0}\frac{t}{2T}dt\\ &=\frac{V_{0}}{L} \int_{0}^{t} \frac{t}{2T}dt\\ &=\frac{V_{0}}{L}\dfrac{t^2}{4T}\\ &=\frac{V_{0}}{L}(\dfrac{t}{2T})^2 \end{align*}

the book that I am reading gives the result $$i(t) =\frac{V_{0}T}{L}(\dfrac{t}{2T})^2 $$.

2 questions :

1) First of all the i(0) = ?

2) where the T in the numerator came from in the resulted expression ?

\$\endgroup\$
2
  • \$\begingroup\$ I think your integration boundaries are not quite right, they need to be set to the function boundaries. You are essentially counting up the area under the different functions. The functions only extend to the end of their boundaries. \$\endgroup\$
    – Voltage Spike
    Commented May 5, 2023 at 16:26
  • \$\begingroup\$ Homer, the expression (from the book) can't be that simple. The volt-second (Webers) curve looks like this. It's piece-wise, not some smooth function of \$t\$, as shown. \$\endgroup\$ Commented May 5, 2023 at 20:36

1 Answer 1

3
\$\begingroup\$

Well, mathematically speaking let's define the voltage in a possible correct way:

$$\text{V}\left(t\right):=\begin{cases} \displaystyle\text{V}_0\cdot\frac{t}{2\text{T}}&\text{if}\space0\leq t<2\text{T}\\ \\ \displaystyle\text{V}_0&\text{if}\space2\text{T}\leq t<3\text{T}\\ \\ \displaystyle-\text{V}_0&\text{if}\space3\text{T}\leq t<4\text{T}\\ \\ \displaystyle\frac{\text{V}_0}{2}\cdot\left(\frac{t}{\text{T}}-6\right)&\text{if}\space4\text{T}\leq t\leq8\text{T} \end{cases}\tag1$$

Now, the relationship between the voltage across and the current through an inductor is given by:

$$\text{V}_\text{L}\left(t\right)=\text{I}_\text{L}'\left(t\right)\cdot\text{L}\space\Longleftrightarrow\space\text{I}_\text{L}\left(t\right)=\text{C}+\frac{1}{\text{L}}\int\text{V}_\text{L}\left(t\right)\space\text{d}t\tag2$$

So, we get:

\begin{equation} \begin{split} \text{I}_\text{L}\left(t\right)&=\text{C}+\frac{1}{\text{L}}\int\text{V}_\text{L}\left(t\right)\space\text{d}t\\ \\ &=\text{C}+\frac{1}{\text{L}}\int\text{V}\left(t\right)\space\text{d}t\\ \\ &=\text{C}+\frac{1}{\text{L}}\cdot\begin{cases} \displaystyle\int\text{V}_0\cdot\frac{t}{2\text{T}}\space\text{d}t&\text{if}\space0\leq t<2\text{T}\\ \\ \displaystyle\int\text{V}_0\space\text{d}t&\text{if}\space2\text{T}\leq t<3\text{T}\\ \\ \displaystyle\int-\text{V}_0\space\text{d}t&\text{if}\space3\text{T}\leq t<4\text{T}\\ \\ \displaystyle\int\frac{\text{V}_0}{2}\cdot\left(\frac{t}{\text{T}}-6\right)\space\text{d}t&\text{if}\space4\text{T}\leq t\leq8\text{T} \end{cases}\\ \\ &=\text{C}+\frac{1}{\text{L}}\cdot\begin{cases} \displaystyle\frac{\text{V}_0}{2\text{T}}\int t\space\text{d}t&\text{if}\space0\leq t<2\text{T}\\ \\ \displaystyle\text{V}_0\int1\space\text{d}t&\text{if}\space2\text{T}\leq t<3\text{T}\\ \\ \displaystyle-\text{V}_0\int1\space\text{d}t&\text{if}\space3\text{T}\leq t<4\text{T}\\ \\ \displaystyle\frac{\text{V}_0}{2}\cdot\left(\frac{1}{\text{T}}\int t\space\text{d}t-6\int1\space\text{d}t\right)&\text{if}\space4\text{T}\leq t\leq8\text{T} \end{cases}\\ \\ &=\text{C}+\frac{1}{\text{L}}\cdot\begin{cases} \displaystyle\frac{\text{V}_0}{2\text{T}}\cdot\frac{t^2}{2}+\text{n}_1&\text{if}\space0\leq t<2\text{T}\\ \\ \displaystyle\text{V}_0t+\text{n}_2&\text{if}\space2\text{T}\leq t<3\text{T}\\ \\ \displaystyle\text{n}_3-\text{V}_0t&\text{if}\space3\text{T}\leq t<4\text{T}\\ \\ \displaystyle\frac{\text{V}_0}{2}\cdot\left(\frac{1}{\text{T}}\cdot\frac{t^2}{2}-6t\right)+\text{n}_4&\text{if}\space4\text{T}\leq t\leq8\text{T} \end{cases} \end{split}\tag3 \end{equation}

\$\endgroup\$
1
  • 1
    \$\begingroup\$ thank you very much for your clear answer appreciate it a lot. \$\endgroup\$ Commented May 5, 2023 at 20:02

Not the answer you're looking for? Browse other questions tagged or ask your own question.