3
\$\begingroup\$

I have a STM32F303K8T6 uC and would like to read ADC1 and ADC2 with DMA, triggered by TIM2 at the same time instance. The triggering by TIM2 works fine, but then only ADC1 is read out and not ADC2. Any suggestions what I need to change? Also when I set the adc_array to uint32_t, the upper and the lower bits are still only from ADC1.

Reference: http://www.st.com/content/ccc/resource/technical/document/reference_manual/4a/19/6e/18/9d/92/43/32/DM00043574.pdf/files/DM00043574.pdf/jcr:content/translations/en.DM00043574.pdf

main.c:

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f3xx_hal.h"

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;
DMA_HandleTypeDef hdma_adc2;

SPI_HandleTypeDef hspi1;
DMA_HandleTypeDef hdma_spi1_rx;
DMA_HandleTypeDef hdma_spi1_tx;

TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim16;

UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_tx;

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
uint16_t adc_array[100];
uint16_t adc_array2[100];

char *buff_tx[64];
int k=0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM16_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);

void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);


/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration----------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM2_Init();
  MX_USART1_UART_Init();
  MX_SPI1_Init();
  MX_TIM16_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();

  /* USER CODE BEGIN 2 */
    //TIMER
    HAL_TIM_OC_Start_IT(&htim2,TIM_CHANNEL_1) ; //Start Timer 2, Channel 1
    HAL_TIM_OC_Start_IT(&htim2,TIM_CHANNEL_2) ; //Start Timer 2, Channel 2
    HAL_TIM_OC_Start_IT(&htim2,TIM_CHANNEL_3) ; //Start Timer 2, Channel 3
    HAL_TIM_OC_Start_IT(&htim2,TIM_CHANNEL_4) ; //Start Timer 2, Channel 4


    //ADC DMA
    HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED);
    HAL_ADCEx_Calibration_Start(&hadc2,ADC_SINGLE_ENDED);

    //HAL_ADC_Start_DMA(&hadc1, (uint16_t*)adc_array, 100);
    HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint16_t*)adc_array, sizeof(adc_array));

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
      k++;
      if(k>10000) {
          sprintf(buff_tx,"voltage=%d,Ia=%d\n",adc_array[0],(adc_array[1]));
          usart_tx(&huart1,64,buff_tx);
          k=0;
      }
  /* USER CODE END WHILE */

  /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */

}

/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInit;

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12PLLCLK_DIV1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure the Systick interrupt time 
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

    /**Configure the Systick 
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* ADC1 init function */
static void MX_ADC1_Init(void)
{

  ADC_MultiModeTypeDef multimode;
  ADC_ChannelConfTypeDef sConfig;

    /**Common config 
    */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure the ADC multi-mode 
    */
  multimode.Mode = ADC_DUALMODE_REGSIMULT;
  multimode.DMAAccessMode = ADC_DMAACCESSMODE_12_10_BITS;
  multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_2CYCLES;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure Regular Channel 
    */
  sConfig.Channel = ADC_CHANNEL_4;
  sConfig.Rank = 1;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.SamplingTime = ADC_SAMPLETIME_601CYCLES_5;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/* ADC2 init function */
static void MX_ADC2_Init(void)
{

  ADC_ChannelConfTypeDef sConfig;

    /**Common config 
    */
  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc2.Init.Resolution = ADC_RESOLUTION_12B;
  hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc2.Init.ContinuousConvMode = DISABLE;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.NbrOfConversion = 1;
  hadc2.Init.DMAContinuousRequests = ENABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc2.Init.LowPowerAutoWait = DISABLE;
  hadc2.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure Regular Channel 
    */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = 1;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.SamplingTime = ADC_SAMPLETIME_181CYCLES_5;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/* SPI1 init function */
static void MX_SPI1_Init(void)
{

  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 7;
  hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
  hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/* TIM2 init function */
static void MX_TIM2_Init(void)
{

  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;
  TIM_OC_InitTypeDef sConfigOC;

  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 0;
  htim2.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED3;
  htim2.Init.Period = 200;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC4REF;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.Pulse = 100;
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  HAL_TIM_MspPostInit(&htim2);

}

/* TIM16 init function */
static void MX_TIM16_Init(void)
{

  TIM_OC_InitTypeDef sConfigOC;
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;

  htim16.Instance = TIM16;
  htim16.Init.Prescaler = 20;
  htim16.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim16.Init.Period = 7400;
  htim16.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim16.Init.RepetitionCounter = 0;
  htim16.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim16) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_OC_Init(&htim16) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_OC_ConfigChannel(&htim16, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.BreakFilter = 0;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim16, &sBreakDeadTimeConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/* USART1 init function */
static void MX_USART1_UART_Init(void)
{

  huart1.Instance = USART1;
  huart1.Init.BaudRate = 57600;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/** 
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void) 
{
  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  /* DMA1_Channel2_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
  /* DMA1_Channel3_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
  /* DMA1_Channel4_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);
  /* DMA1_Channel6_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);

}

/** Configure pins as 
        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct;

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_SET);

  /*Configure GPIO pin : PA6 */
  GPIO_InitStruct.Pin = GPIO_PIN_6;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : PA15 */
  GPIO_InitStruct.Pin = GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
void _Error_Handler(char * file, int line)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1) 
  {
  }
  /* USER CODE END Error_Handler_Debug */ 
}

#ifdef USE_FULL_ASSERT

/**
   * @brief Reports the name of the source file and the source line number
   * where the assert_param error has occurred.
   * @param file: pointer to the source file name
   * @param line: assert_param error line source number
   * @retval None
   */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */

}

#endif

/**
  * @}
  */ 

/**
  * @}
*/ 

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

HAL_ADC_MspInit() in stm32f3xx_hal_msp.c:

void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{

  GPIO_InitTypeDef GPIO_InitStruct;
  if(hadc->Instance==ADC1)
  {
  /* USER CODE BEGIN ADC1_MspInit 0 */

  /* USER CODE END ADC1_MspInit 0 */
    /* Peripheral clock enable */
    HAL_RCC_ADC12_CLK_ENABLED++;
    if(HAL_RCC_ADC12_CLK_ENABLED==1){
      __HAL_RCC_ADC12_CLK_ENABLE();
    }

    /**ADC1 GPIO Configuration    
    PA3     ------> ADC1_IN4 
    */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* ADC1 DMA Init */
    /* ADC1 Init */
    hdma_adc1.Instance = DMA1_Channel1;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_MEDIUM;
    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
    {
      _Error_Handler(__FILE__, __LINE__);
    }

    __HAL_LINKDMA(hadc,DMA_Handle,hdma_adc1);

  /* USER CODE BEGIN ADC1_MspInit 1 */

  /* USER CODE END ADC1_MspInit 1 */
  }
  else if(hadc->Instance==ADC2)
  {
  /* USER CODE BEGIN ADC2_MspInit 0 */

  /* USER CODE END ADC2_MspInit 0 */
    /* Peripheral clock enable */
    HAL_RCC_ADC12_CLK_ENABLED++;
    if(HAL_RCC_ADC12_CLK_ENABLED==1){
      __HAL_RCC_ADC12_CLK_ENABLE();
    }

    /**ADC2 GPIO Configuration    
    PA4     ------> ADC2_IN1
    PA5     ------> ADC2_IN2 
    */
    GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5;
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* ADC2 DMA Init */
    /* ADC2 Init */
    hdma_adc2.Instance = DMA1_Channel2;
    hdma_adc2.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc2.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc2.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc2.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc2.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc2.Init.Mode = DMA_CIRCULAR;
    hdma_adc2.Init.Priority = DMA_PRIORITY_MEDIUM;
    if (HAL_DMA_Init(&hdma_adc2) != HAL_OK)
    {
      _Error_Handler(__FILE__, __LINE__);
    }

    __HAL_LINKDMA(hadc,DMA_Handle,hdma_adc2);

  /* USER CODE BEGIN ADC2_MspInit 1 */

  /* USER CODE END ADC2_MspInit 1 */
  }

}
\$\endgroup\$
2
  • \$\begingroup\$ What do you mean by 'only ADC1 is read out and not ADC2'? You mean adc_array2 is always 0? \$\endgroup\$
    – user162889
    Commented Sep 23, 2017 at 14:51
  • \$\begingroup\$ What I expect should happen is, that when I activate HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint16_t*)adc_array, sizeof(adc_array)); , in the adc_array there should be values of ADC1 and ADC2, alternating, but this seems not to happen. How can I achieve, that I get both values over the DMA, but only when timer TIM2 triggers the ADC1? \$\endgroup\$ Commented Sep 23, 2017 at 14:55

2 Answers 2

1
\$\begingroup\$

Have you tried changing

hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;

to be full word (DMA_MDATAALIGN_WORD) instead?

hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
\$\endgroup\$
2
  • \$\begingroup\$ Can you clarify ? \$\endgroup\$
    – Long Pham
    Commented Aug 9, 2018 at 9:42
  • \$\begingroup\$ When running simultaneous ADC1 and ADC2, the conversion result goes into bits 0-11 and 16-27 respectively. Thus a 32b word holds 2 x 12b conversions. To get both, likely you need to tell the DMA that you want the whole 32b(word) and not only 16b(half word). You can find more info about this in stm32f1xx_hal_adc.c: "...ADC2 ... data can be transferred in dual ADC mode using DMA... ADC1 conversion register DR contains ADC1 conversion ... and, additionally, ADC2... to have DMA transferring the conversion results of ADC1 only, DMA must be configured to transfer size: half word." \$\endgroup\$
    – rafamart
    Commented Aug 10, 2018 at 10:41
1
\$\begingroup\$

Simple task, ridiculous library. <irony>I agree, HAL is much easier to understand and write</irony>

F303 double ADC mode working example from my production code:

DMA1_Channel1 -> CPAR = (uint32_t)&(ADC12_COMMON -> CDR);
DMA1_Channel1 -> CMAR = (uint32_t)&obuff[0][0];
DMA1_Channel1 -> CNDTR = 1 * 1024;
DMA1_Channel1 -> CCR = DMA_CCR_MINC | DMA_CCR_TCIE | DMA_CCR_EN | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_TEIE | (DMA_CCR_PL_Msk);

ADC12_COMMON -> CCR = (0b11 << ADC12_CCR_MDMA_Pos) | (0b111 << ADC12_CCR_MULTI_Pos);

ADC1 -> CFGR = ADC_CFGR_DMAEN | (0b10 << ADC_CFGR_RES_Pos);
ADC1 -> CFGR &= ~(ADC_CFGR_EXTEN_Msk | ADC_CFGR_EXTSEL_Msk);  // software trigger only , converting as fast as possible - change it to your trigger.
ADC1 -> CFGR |= ADC_CFGR_CONT;
ADC1 -> SMPR1 = 0;
ADC1 -> SMPR2 = 0;

ADC1 -> SQR1 &= ~(ADC_SQR1_L_Msk);
ADC1 -> SQR1 &= ~(ADC_SQR1_SQ1_Msk);
ADC1 -> SQR1 |= (1 << ADC_SQR1_SQ1_Pos);

ADC2 -> CFGR = ADC_CFGR_DMAEN | (0b10 << ADC_CFGR_RES_Pos);
ADC2 -> SMPR1 = 0;
ADC2 -> SMPR2 = 0;

ADC2 -> SQR1 &= ~(ADC_SQR1_L_Msk);
ADC2 -> SQR1 &= ~(ADC_SQR1_SQ1_Msk);
ADC2 -> SQR1 |= (1 << ADC_SQR1_SQ1_Pos);
ADC1 -> CR |= ADC_CR_ADSTART;
\$\endgroup\$
2
  • 1
    \$\begingroup\$ HAL and standard libraries are wonderful tools but sometimes you find some limitations or bugs that can be overcome getting down to register manipulation. Having said that, your code may be short but difficult to understand, maintain, port... \$\endgroup\$
    – user162889
    Commented Sep 25, 2017 at 0:00
  • 1
    \$\begingroup\$ Actually I have found that the most of the HAL programmers try to avoid more complicated hardware settings, as setting them in the HAL is a nightmare. HAL gives you false feeling that you can program uC without studying the RM. It is enough for the "banana" code I agree. \$\endgroup\$ Commented Sep 25, 2017 at 1:17

Not the answer you're looking for? Browse other questions tagged or ask your own question.