Skip to main content

James Webb captures swirls of dust and gas in nearby galaxies

The James Webb Space Telescope is helping astronomers to peer into nearby galaxies and see the elaborate structures of dust and gas which are created by and necessary for star formation.

The Physics at High Angular resolution in Nearby Galaxies, or PHANGS project, involves using data from different telescopes to look at galaxies that are close to us. By using telescopes such as the Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array, researchers can collect data in different wavelengths such as the visible light and radio wavelengths.

Now, the James Webb Space Telescope can add its data to the project with its ability to look in the infrared wavelength. Looking in the infrared allows Webb to peer through clouds of dust which would be opaque in the visible light wavelength to see structures such as the gas and dust which surround galaxies.

“The high-resolution imaging needed to study these structures has long evaded astronomers — that is, until Webb came into the picture. Webb’s powerful infrared capabilities can pierce through the dust to connect the missing pieces of the puzzle,” Webb scientists write. “For example, specific wavelengths observable by MIRI (7.7 and 11.3 microns) are sensitive to emission from polycyclic aromatic hydrocarbons, which play a crucial role in the formation of stars and planets. These molecules were detected by Webb in the first observations by the PHANGS program.”

For example, this image of galaxy NGC 1433, taken with Webb’s MIRI instrument, shows the bright glow of young stars in the galaxy’s spiral arms. These stars give off radiation that blows away dust and gas, sculpting it into shapes that then glow in the infrared range in which Webb operates.

Barred spiral galaxy NGC 1433 takes on a completely new look when observed by Webb’s Mid-Infrared Instrument (MIRI).
This image taken by the NASA/ESA/CSA James Webb Space Telescope shows one of a total of 19 galaxies targeted for study by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration. Nearby barred spiral galaxy NGC 1433 takes on a completely new look when observed by Webb’s Mid-Infrared Instrument (MIRI). NASA, ESA, CSA, and J. Lee (NOIRLab), A. Pagan (STScI)

This next image shows galaxy NGC 7496, also taken with Webb’s MIRI instrument. This barred spiral galaxy has a busy central region called an active galactic nucleus which is glowing brightly and is flanked by two bright spiral arms. The sculpted shapes of the spiral arms are due to filaments of gas that spread around huge bubbles of gas.

The spiral arms of NGC 7496 are filled with cavernous bubbles and shells overlapping one another in this image from Webb’s Mid-Infrared Instrument (MIRI).
NGC 7496 lies over 24 million light-years away from Earth in the constellation Grus. In this image of NGC 7496, blue, green, and red were assigned to Webb’s MIRI data at 7.7, 10 and 11.3, and 21 microns (the F770W, F1000W and F1130W, and F2100W filters, respectively). NASA, ESA, CSA, and J. Lee (NOIRLab), A. Pagan (STScI)

So far Webb has collected data from five nearby galaxies, with more observations of a total of 19 galaxies to come in the future.

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more