Skip to main content

James Webb spots ancient dust that could be from the earliest supernovas

Dust might not sound like the most interesting of topics, but to a certain set of astronomers, it’s thrilling. Researchers recently used the James Webb Space Telescope to identify grains of dust from the early universe, which could have been produced by the earliest supernovas.

James Webb is a powerful tool because it allows researchers to identify extremely distant, and therefore extremely old, galaxies. Webb can be used to not only identify these early galaxies but also to take spectra from them, which can reveal their chemical composition by seeing which wavelengths of light they absorb. As part of a survey called JWST Advanced Deep Extragalactic Survey or JADES, Webb’s NIRCam instrument took this image of a region of the sky called GOODS-South. Within that image, researchers used Webb’s NIRSpec instrument to look at the spectra of early galaxies like JADES-GS-z6.

This image highlights the location of the galaxy JADES-GS-z6 in a portion of an area of the sky known as GOODS-South, which was observed as part of the JWST Advanced Deep Extragalactic Survey, or JADES.
This image highlights the location of the galaxy JADES-GS-z6 in a portion of an area of the sky known as GOODS-South, which was observed as part of the JWST Advanced Deep Extragalactic Survey, or JADES. ESA/Webb, NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (Center for Astrophysics, Harvard & Smithsonian), S. Tacchella (University of Cambridge, M. Rieke (Univ. of Arizona), D. Eisenstein (Center for Astrophysics, Harvard & Smithsonian), A. Pagan (STScI)

Using the spectrograph, the researchers found evidence of carbon-rich grains in dust clouds. That appears to be similar to findings of compounds called polycyclic aromatic hydrocarbons (PAHs), however, it wouldn’t have been possible for these complex compounds to have formed so early in the universe.

This is complicated because spectra can look similar for different chemicals. In this case, it could be that the tiny variance found by the researchers is significant: their feature was most prominent at 226.3 nanometers, while PAHs are typically most prominent at  217.5 nanometers. That’s a very small discrepancy, but it could be due to a mixture of particles present in the dust.

“This slight shift in wavelength of where the absorption is strongest suggests we may be seeing a different mix of grains, for example, graphite- or diamond-like grains,” said lead author of the research, Joris Witstok of the University of Cambridge, in a statement. Witstok went on to explain that this mixture could have come about due to early supernovas or large stars called Wolf-Rayet stars: “This could also potentially be produced on short timescales by Wolf-Rayet stars or supernova ejecta.”

Since work with Webb began last year, astronomers have noted that early galaxies seem to be considerably more numerous and more massive than anyone had predicted, which, along with evidence such as this discovery, is leading them to rethink their assumptions about the early universe.

“This discovery implies that infant galaxies in the early Universe develop much faster than we ever anticipated,” said researcher Renske Smit of Liverpool John Moores University. “Webb shows us a complexity of the earliest birthplaces of stars (and planets) that models are yet to explain.“

The research is published in the journal Nature.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more