Skip to main content

Image of darkness and light shows new stars being born in Lupus 3 nebula

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds. CTIO/NOIRLab/DOE/NSF/AURA/ T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab) Image Processing: D. de Martin & M. Zamani (NSF’s NOIRLab)

The other type of nebula shown here, Bernes 149, is a type called a reflection nebula. This is also a cloud of dust and gas, but less dense than the dark nebula. Instead of blocking out light from stars, this cloud reflects that light, making the cloud appear to glow. Unlike emission nebulae, in which the gas actually glows because it is ionized, the reflection nebula isn’t producing light of its own but is still reflecting enough light to be seen.

Within the nebulae, you can see bright points of light which are young stars. Right in the middle of the image are two close-together stars, HR 5999 and HR 6000, which are blue because of their young age. They are just 1 million years old and aren’t yet big or old enough for nuclear fusion to be occurring in their cores. That means they are not yet main sequence stars, but are instead pre-main-sequence stars that glow because of the strong gravity compressing the matter within them, warming it up.

When stars are born and are young, they give off strong stellar winds which blow away dust and gas from around them. That prevents more stars from being born nearby, which creates an equilibrium to keep the number of new stars being born in balance. Studying sites of star formation like these nebulae can help astronomers learn more about this process and about the early stages of the stellar life cycle.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the incredible first images taken by the dark matter-hunting Euclid telescope
Euclid’s Near-Infrared Spectrometer and Photometer (NISP) instrument is dedicated to measuring the amount of light that galaxies emit at each wavelength. It will image the sky in infrared light (900–2000 nm) to measuring the brightness and intensity of light. This image was taken during commissioning of Euclid to check that the focused instrument worked as expected. This is a raw image taken using NISP’s ‘Y’ filter. Because it is largely unprocessed, some unwanted artefacts remain – for example the cosmic rays that shoot straight across, seen especially in the VIS image. The Euclid Consortium will ultimately turn the longer-exposed survey observations into science-ready images that are artefact-free, more detailed, and razor sharp.

The recently-launched Euclid space telescope just took some of its first images, and the European Space Agency (ESA) has shared them to give a taste of what is to come from this dark matter investigation tool.

Even though they are only preliminary test images, they still give a stunning view of distant galaxies and show what Euclid will be able to produce once it begins its science operations in a few months' time. The aim of the mission is to learn about dark matter and dark energy by creating a 3D map of the dark matter in the universe.

Read more
Spiral galaxy caught in the act as it’s about to eat its dwarf galaxy neighbor
The spiral galaxy NGC 1532, also known as Haley’s Coronet, is caught in a lopsided tug of war with its smaller neighbor, the dwarf galaxy NGC 1531. The image — taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab — captures the mutual gravitational influences of a massive- and dwarf-galaxy merger.

A recent image from the Dark Energy Camera shows an act of galactic cannibalism, with a spiral galaxy similar to our Milky Way about to devour a nearby dwarf galaxy that has wandered into its path.

The dramatic interaction is occurring between a large spiral galaxy known as Haley's Coronet and a smaller dwarf galaxy called NGC 1531. The dwarf galaxy is in the process of merging with the larger galaxy, which is being pulled into an irregular shape by the gravitational forces.

Read more
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more