You are currently browsing the category archive for the ‘math.HO’ category.

Earlier this year, I gave a series of lectures at the Joint Mathematics Meetings at San Francisco. I am uploading here the slides for these talks:

I also have written a text version of the first talk, which has been submitted to the Notices of the American Mathematical Society.

Just a short note that the memorial article “Analysis and applications: The mathematical work of Elias Stein” has just been published in the Bulletin of the American Mathematical Society.  This article was a collective effort led by Charlie Fefferman, Alex Ionescu, Steve Wainger and myself to describe the various mathematical contributions of Elias Stein, who passed away in December 2018; it also features contributions from Loredana Lanzani, Akos Magyar, Mariusz Mirek, Alexander Nagel, Duong Phong, Lillian Pierce, Fulvio Ricci, Christopher Sogge, and Brian Street.  (My contribution was mostly focused on Stein’s contribution to restriction theory.)

Peter Denton, Stephen Parke, Xining Zhang, and I have just uploaded to the arXiv a completely rewritten version of our previous paper, now titled “Eigenvectors from Eigenvalues: a survey of a basic identity in linear algebra“. This paper is now a survey of the various literature surrounding the following basic identity in linear algebra, which we propose to call the eigenvector-eigenvalue identity:

Theorem 1 (Eigenvector-eigenvalue identity) Let {A} be an {n \times n} Hermitian matrix, with eigenvalues {\lambda_1(A),\dots,\lambda_n(A)}. Let {v_i} be a unit eigenvector corresponding to the eigenvalue {\lambda_i(A)}, and let {v_{i,j}} be the {j^{th}} component of {v_i}. Then

\displaystyle |v_{i,j}|^2 \prod_{k=1; k \neq i}^n (\lambda_i(A) - \lambda_k(A)) = \prod_{k=1}^{n-1} (\lambda_i(A) - \lambda_k(M_j))

where {M_j} is the {n-1 \times n-1} Hermitian matrix formed by deleting the {j^{th}} row and column from {A}.

When we posted the first version of this paper, we were unaware of previous appearances of this identity in the literature; a related identity had been used by Erdos-Schlein-Yau and by myself and Van Vu for applications to random matrix theory, but to our knowledge this specific identity appeared to be new. Even two months after our preprint first appeared on the arXiv in August, we had only learned of one other place in the literature where the identity showed up (by Forrester and Zhang, who also cite an earlier paper of Baryshnikov).

The situation changed rather dramatically with the publication of a popular science article in Quanta on this identity in November, which gave this result significantly more exposure. Within a few weeks we became informed (through private communication, online discussion, and exploration of the citation tree around the references we were alerted to) of over three dozen places where the identity, or some other closely related identity, had previously appeared in the literature, in such areas as numerical linear algebra, various aspects of graph theory (graph reconstruction, chemical graph theory, and walks on graphs), inverse eigenvalue problems, random matrix theory, and neutrino physics. As a consequence, we have decided to completely rewrite our article in order to collate this crowdsourced information, and survey the history of this identity, all the known proofs (we collect seven distinct ways to prove the identity (or generalisations thereof)), and all the applications of it that we are currently aware of. The citation graph of the literature that this ad hoc crowdsourcing effort produced is only very weakly connected, which we found surprising:

The earliest explicit appearance of the eigenvector-eigenvalue identity we are now aware of is in a 1966 paper of Thompson, although this paper is only cited (directly or indirectly) by a fraction of the known literature, and also there is a precursor identity of Löwner from 1934 that can be shown to imply the identity as a limiting case. At the end of the paper we speculate on some possible reasons why this identity only achieved a modest amount of recognition and dissemination prior to the November 2019 Quanta article.

The self-chosen remit of my blog is “Updates on my research and expository papers, discussion of open problems, and other maths-related topics”.  Of the 774 posts on this blog, I estimate that about 99% of the posts indeed relate to mathematics, mathematicians, or the administration of this mathematical blog, and only about 1% are not related to mathematics or the community of mathematicians in any significant fashion.

This is not one of the 1%.

Mathematical research is clearly an international activity.  But actually a stronger claim is true: mathematical research is a transnational activity, in that the specific nationality of individual members of a research team or research community are (or should be) of no appreciable significance for the purpose of advancing mathematics.  For instance, even during the height of the Cold War, there was no movement in (say) the United States to boycott Soviet mathematicians or theorems, or to only use results from Western literature (though the latter did sometimes happen by default, due to the limited avenues of information exchange between East and West, and former did occasionally occur for political reasons, most notably with the Soviet Union preventing Gregory Margulis from traveling to receive his Fields Medal in 1978 EDIT: and also Sergei Novikov in 1970).    The national origin of even the most fundamental components of mathematics, whether it be the geometry (γεωμετρία) of the ancient Greeks, the algebra (الجبر) of the Islamic world, or the Hindu-Arabic numerals 0,1,\dots,9, are primarily of historical interest, and have only a negligible impact on the worldwide adoption of these mathematical tools. While it is true that individual mathematicians or research teams sometimes compete with each other to be the first to solve some desired problem, and that a citizen could take pride in the mathematical achievements of researchers from their country, one did not see any significant state-sponsored “space races” in which it was deemed in the national interest that a particular result ought to be proven by “our” mathematicians and not “theirs”.   Mathematical research ability is highly non-fungible, and the value added by foreign students and faculty to a mathematics department cannot be completely replaced by an equivalent amount of domestic students and faculty, no matter how large and well educated the country (though a state can certainly work at the margins to encourage and support more domestic mathematicians).  It is no coincidence that all of the top mathematics department worldwide actively recruit the best mathematicians regardless of national origin, and often retain immigration counsel to assist with situations in which these mathematicians come from a country that is currently politically disfavoured by their own.

Of course, mathematicians cannot ignore the political realities of the modern international order altogether.  Anyone who has organised an international conference or program knows that there will inevitably be visa issues to resolve because the host country makes it particularly difficult for certain nationals to attend the event.  I myself, like many other academics working long-term in the United States, have certainly experienced my own share of immigration bureaucracy, starting with various glitches in the renewal or application of my J-1 and O-1 visas, then to the lengthy vetting process for acquiring permanent residency (or “green card”) status, and finally to becoming naturalised as a US citizen (retaining dual citizenship with Australia).  Nevertheless, while the process could be slow and frustrating, there was at least an order to it.  The rules of the game were complicated, but were known in advance, and did not abruptly change in the middle of playing it (save in truly exceptional situations, such as the days after the September 11 terrorist attacks).  One just had to study the relevant visa regulations (or hire an immigration lawyer to do so), fill out the paperwork and submit to the relevant background checks, and remain in good standing until the application was approved in order to study, work, or participate in a mathematical activity held in another country.  On rare occasion, some senior university administrator may have had to contact a high-ranking government official to approve some particularly complicated application, but for the most part one could work through normal channels in order to ensure for instance that the majority of participants of a conference could actually be physically present at that conference, or that an excellent mathematician hired by unanimous consent by a mathematics department could in fact legally work in that department.

With the recent and highly publicised executive order on immigration, many of these fundamental assumptions have been seriously damaged, if not destroyed altogether.  Even if the order was withdrawn immediately, there is no longer an assurance, even for nationals not initially impacted by that order, that some similar abrupt and major change in the rules for entry to the United States could not occur, for instance for a visitor who has already gone through the lengthy visa application process and background checks, secured the appropriate visa, and is already in flight to the country.  This is already affecting upcoming or ongoing mathematical conferences or programs in the US, with many international speakers (including those from countries not directly affected by the order) now cancelling their visit, either in protest or in concern about their ability to freely enter and leave the country.  Even some conferences outside the US are affected, as some mathematicians currently in the US with a valid visa or even permanent residency are uncertain if they could ever return back to their place of work if they left the country to attend a meeting.  In the slightly longer term, it is likely that the ability of elite US institutions to attract the best students and faculty will be seriously impacted.  Again, the losses would be strongest regarding candidates that were nationals of the countries affected by the current executive order, but I fear that many other mathematicians from other countries would now be much more concerned about entering and living in the US than they would have previously.

It is still possible for this sort of long-term damage to the mathematical community (both within the US and abroad) to be reversed or at least contained, but at present there is a real risk of the damage becoming permanent.  To prevent this, it seems insufficient for me for the current order to be rescinded, as desirable as that would be; some further legislative or judicial action would be needed to begin restoring enough trust in the stability of the US immigration and visa system that the international travel that is so necessary to modern mathematical research becomes “just” a bureaucratic headache again.

Of course, the impact of this executive order is far, far broader than just its effect on mathematicians and mathematical research.  But there are countless other venues on the internet and elsewhere to discuss these other aspects (or politics in general).  (For instance, discussion of the qualifications, or lack thereof, of the current US president can be carried out at this previous post.) I would therefore like to open this post to readers to discuss the effects or potential effects of this order on the mathematical community; I particularly encourage mathematicians who have been personally affected by this order to share their experiences.  As per the rules of the blog, I request that “the discussions are kept constructive, polite, and at least tangentially relevant to the topic at hand”.

Some relevant links (please feel free to suggest more, either through comments or by email):

Bill Thurston, who made fundamental contributions to our understanding of low-dimensional manifolds and related structures, died on Tuesday, aged 65.

Perhaps Thurston’s best known achievement is the proof of the hyperbolisation theorem for Haken manifolds, which showed that 3-manifolds which obeyed a certain number of topological conditions, could always be given a hyperbolic geometry (i.e. a Riemannian metric that made the manifold isometric to a quotient of the hyperbolic 3-space H^3).  This difficult theorem connecting the topological and geometric structure of 3-manifolds led Thurston to give his influential geometrisation conjecture, which (in principle, at least) completely classifies the topology of an arbitrary compact 3-manifold as a combination of eight model geometries (now known as Thurston model geometries).  This conjecture has many consequences, including Thurston’s hyperbolisation theorem and (most famously) the Poincaré conjecture.  Indeed, by placing that conjecture in the context of a conceptually appealing general framework, of which many other cases could already be verified, Thurston provided one of the strongest pieces of evidence towards the truth of the Poincaré conjecture, until the work of Grisha Perelman in 2002-2003 proved both the Poincaré conjecture and the geometrisation conjecture by developing Hamilton’s Ricci flow methods.  (There are now several variants of Perelman’s proof of both conjectures; in the proof of geometrisation by Bessieres, Besson, Boileau, Maillot, and Porti, Thurston’s hyperbolisation theorem is a crucial ingredient, allowing one to bypass the need for the theory of Alexandrov spaces in a key step in Perelman’s argument.)

One of my favourite results of Thurston’s is his elegant method for everting the sphere (smoothly turning a sphere S^2 in {\bf R}^3 inside out without any folds or singularities).  The fact that sphere eversion can be achieved at all is highly unintuitive, and is often referred to as Smale’s paradox, as Stephen Smale was the first to give a proof that such an eversion exists.  However, prior to Thurston’s method, the known constructions for sphere eversion were quite complicated.  Thurston’s method, relying on corrugating and then twisting the sphere, is sufficiently conceptual and geometric that it can in fact be explained quite effectively in non-technical terms, as was done in the following excellent video entitled “Outside In“, and produced by the Geometry Center:

In addition to his direct mathematical research contributions, Thurston was also an amazing mathematical expositor, having the rare knack of being able to describe the process of mathematical thinking in addition to the results of that process and the intuition underlying it.  His wonderful essay “On proof and progress in mathematics“, which I highly recommend, is the quintessential instance of this; more recent examples include his many insightful questions and answers on MathOverflow.

I unfortunately never had the opportunity to meet Thurston in person (although we did correspond a few times online), but I know many mathematicians who have been profoundly influenced by him and his work.  His death is a great loss for mathematics.

Here is a nice version of the periodic table (produced jointly by the Association for the British Pharmaceutical Industry, British Petroleum, the Chemical Industry Education Centre, and the Royal Society for Chemistry) that focuses on the applications of each of the elements, rather than their chemical properties.  A simple idea, but remarkably effective in bringing the table to life.

elements

It might be amusing to attempt something similar for mathematics, for instance creating a poster that takes each of the top-level categories in the AMS 2010 Mathematics Subject Classification scheme (or perhaps the arXiv math subject classification), and listing four or five applications of each, one of which would be illustrated by some simple artwork.  (Except, of course, for those subfields that are “seldom found in nature”. :-) )

A project like this, which would need expertise both in mathematics and in graphic design, and which could be decomposed into several loosely interacting subprojects, seems amenable to a polymath-type approach; it seems to me that popularisation of mathematics is as valid an application of this paradigm as research mathematics.   (Admittedly, there is a danger of “design by committee“, but a polymath project is not quite the same thing as a committee, and it would be an interesting experiment to see the relative strengths and weaknesses of this design method.)   I’d be curious to see what readers would think of such an experiment.

[Update, Oct 25: A Math Overflow thread to collect applications of each of the major branches of mathematics has now been formed here, and is already rather active.  Please feel free to contribute!]

[Via this post from the Red Ferret, which was suggested to me automatically via Google Reader’s recommendation algorithm.]

Now that the quarter is nearing an end, I’m returning to the half of the polymath1 project hosted here, which focussed on computing density Hales-Jewett numbers and related quantities.  The purpose of this thread is to try to organise the task of actually writing up the results that we already have; as this is a metathread, I don’t think we need to number the comments as in the research threads.

To start the ball rolling, I have put up a proposed outline of the paper on the wiki.   At present, everything in there is negotiable: title, abstract, introduction, and choice and ordering of sections.  I suppose we could start by trying to get some consensus as to what should or should not go into this paper, how to organise it, what notational conventions to use, whether the paper is too big or too small, and so forth.  Once there is some reasonable consensus, I will try creating some TeX files for the individual sections (much as is already being done with the first polymath1 paper) and get different contributors working on different sections (presumably we will be able to coordinate all this through this thread).   This, like everything else in the polymath1 project, will be an experiment, with the rules made up as we go along; presumably once we get started it will become clearer what kind of collaborative writing frameworks work well, and which ones do not.

Given that this blog is currently being devoted to a rather intensive study of flows on manifolds, I thought that it might be apropos to highlight an amazing 22-minute video from 1994 on this general topic by the (unfortunately now closed) Geometry Center, entitled “Outside In“, which depicts Smale’s paradox (which asserts that an 2-sphere in three-dimensional space can be smoothly inverted without ever ceasing to be an immersion), following a construction of Thurston (who was credited with the concept for the video). I first saw this video at the 1998 International Congress of Mathematicians in Berlin, where it won the first prize at the VideoMath Festival held there. It did a remarkably effective job of explaining the paradox, its resolution in three dimensions, and the lack of a similar paradox in two dimensions, all in a clear and non-technical manner.

A (rather low resolution) copy of the first half of the video can be found here, and the second half can be found here. Some higher resolution short movies of just the inversion process can be found at this Geometry Center page. Finally, the video (and an accompanying booklet with more details and background) can still be obtained today from A K Peters, although I believe the video is only available in the increasingly archaic VHS format.

There are a few other similar such high-quality expository videos of advanced mathematics floating around the internet, but I do not know of any page devoted to collecting such videos. If any readers have their own favourites, you are welcome to post some links or pointers to them here.

I’m continuing my series of articles for the Princeton Companion to Mathematics ahead of the winter quarter here at UCLA (during which I expect this blog to become dominated by ergodic theory posts) with my article on generalised solutions to PDE. (I have three more PCM articles to release here, but they will have to wait until spring break.) This article ties in to some extent with my previous PCM article on distributions, because distributional solutions are one good example of a “generalised solution” or “weak solution” to a PDE. They are not the only such notion though; one also has variational and stationary solutions, viscosity solutions, penalised solutions, solutions outside of a singular set, and so forth. These notions of generalised solution are necessary when dealing with PDE that can exhibit singularities, shocks, oscillations, or other non-smooth behaviour. Also, in the foundational existence theory for many PDE, it has often been profitable to first construct a fairly weak solution and then use additional arguments to upgrade that solution to a stronger solution (e.g. a “classical” or “smooth” solution), rather than attempt to construct the stronger solution directly. On the other hand, there is a tradeoff between how easy it is to construct a weak solution, and how easy it is to upgrade that solution; solution concepts which are so weak that they cannot be upgraded at all seem to be significantly less useful in the subject, even if (or especially if) existence of such solutions is a near-triviality. [This is one manifestation of the somewhat whimsical “law of conservation of difficulty”: in order to prove any genuinely non-trivial result, some hard work has to be done somewhere. In particular, it is often the case that the behaviour of PDE depends quite sensitively on the exact structure of that PDE (e.g. on the sign of various key terms), and so any result that captures such behaviour must, at some point, exploit that structure in a non-trivial manner; one usually cannot get very far in PDE by relying just on general-purpose theorems that apply to all PDE, regardless of structure.]

The Companion also has a section on history of mathematics; for instance, here is Leo Corry‘s PCM article “The development of the idea of proof“, covering the period from Euclid to Frege. We take for granted nowadays that we have precise, rigorous, and standard frameworks for proving things in set theory, number theory, geometry, analysis, probability, etc., but it is worth remembering that for the majority of the history of mathematics, this was not completely the case; even Euclid’s axiomatic approach to geometry contained some implicit assumptions about topology, order, and sets which were not fully formalised until the work of Hilbert in the modern era. (Even nowadays, there are still a few parts of mathematics, such as mathematical quantum field theory, which still do not have a completely satisfactory formalisation, though hopefully the situation will improve in the future.)

[Update, Jan 4: bad link fixed.]

My colleague Ricardo Pérez-Marco showed me a very cute proof of Pythagoras’ theorem, which I thought I would share here; it’s not particularly earth-shattering, but it is perhaps the most intuitive proof of the theorem that I have seen yet.

In the above diagram, a, b, c are the lengths BC, CA, and AB of the right-angled triangle ACB, while x and y are the areas of the right-angled triangles CDB and ADC respectively. Thus the whole triangle ACB has area x+y.

Now observe that the right-angled triangles CDB, ADC, and ACB are all similar (because of all the common angles), and thus their areas are proportional to the square of their respective hypotenuses. In other words, (x,y,x+y) is proportional to (a^2, b^2, c^2). Pythagoras’ theorem follows.

Read the rest of this entry »

Archives