Skip to main content
spelling
Source Link
Jesse Rusak
  • 57k
  • 12
  • 101
  • 102

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quietquite well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

If you need the shortest path distances to compute a solution for the TSP, then you are probably interested in matrices that contain all distances between your sources and destinations. For this you could consider Computing Many-to-Many Shortest Paths Using Highway Hierarchies. Note, that this has been improved by newer approaches in the last 2 years.

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

If you need the shortest path distances to compute a solution for the TSP, then you are probably interested in matrices that contain all distances between your sources and destinations. For this you could consider Computing Many-to-Many Shortest Paths Using Highway Hierarchies. Note, that this has been improved by newer approaches in the last 2 years.

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quite well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

If you need the shortest path distances to compute a solution for the TSP, then you are probably interested in matrices that contain all distances between your sources and destinations. For this you could consider Computing Many-to-Many Shortest Paths Using Highway Hierarchies. Note, that this has been improved by newer approaches in the last 2 years.

added 464 characters in body
Source Link
SebastianK
  • 3.6k
  • 3
  • 31
  • 50

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

If you need the shortest path distances to compute a solution for the TSP, then you are probably interested in matrices that contain all distances between your sources and destinations. For this you could consider Computing Many-to-Many Shortest Paths Using Highway Hierarchies. Note, that this has been improved by newer approaches in the last 2 years.

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

If you need the shortest path distances to compute a solution for the TSP, then you are probably interested in matrices that contain all distances between your sources and destinations. For this you could consider Computing Many-to-Many Shortest Paths Using Highway Hierarchies. Note, that this has been improved by newer approaches in the last 2 years.

added 58 characters in body
Source Link
SebastianK
  • 3.6k
  • 3
  • 31
  • 50

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

This question has been an active area of research in the last years. The main idea is to do a preprocessing on the graph once, to speed up all following queries. With this additional information itineraries can be computed very fast. Still, Dijkstra's Algorithm is the basis for all optimisations.

Arachnid described the usage of bidirectional search and edge pruning based on hierarchical information. These speedup techniques work quiet well, but the most recent algorithms outperform these techniques by all means. With current algorithms a shortest paths can be computed in considerable less time than one millisecond on a continental road network. A fast implementation of the unmodified algorithm of Dijkstra needs about 10 seconds.

The article Engineering Fast Route Planning Algorithms gives an overview of the progress of research in that field. See the references of that paper for further information.

The fastest known algorithms do not use information about the hierarchical status of the road in the data, i.e. if it is a highway or a local road. Instead, they compute in a preprocessing step an own hierarchy that optimised to speed up route planning. This precomputation can then be used to prune the search: Far away from start and destination slow roads need not be considered during Dijkstra's Algorithm. The benefits are very good performance and a correctness guarantee for the result.

The first optimised route planning algorithms dealt only with static road networks, that means an edge in the graph has a fixed cost value. This not true in practice, since we want to take dynamic information like traffic jams or vehicle dependent restrictrions into account. Latest algorithms can also deal with such issues, but there are still problems to solve and the research is going on.

deleted 52 characters in body
Source Link
SebastianK
  • 3.6k
  • 3
  • 31
  • 50
Loading
Improved description
Source Link
SebastianK
  • 3.6k
  • 3
  • 31
  • 50
Loading
typo
Source Link
SebastianK
  • 3.6k
  • 3
  • 31
  • 50
Loading
Source Link
SebastianK
  • 3.6k
  • 3
  • 31
  • 50
Loading