Skip to main content
The 2024 Developer Survey results are live! See the results
added 11 characters in body
Source Link
Karl Knechtel
  • 61.2k
  • 13
  • 118
  • 165

I find this particularly useful for when you want to 'store'storing arguments for a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b):
    return a + b 

tests = { (1,4):5, (0, 0):0, (-1, 3):3 } 

for test, result in tests.items():
    print ('test: adding', test, '==', result, '---', add(*test) == result)

There is no other way to call add, other than manually doing something like add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
    return Car(*args)

This is also useful when you want to call a superclass'the constructor of a superclass.

I find this particularly useful for when you want to 'store' a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b): return a + b
tests = { (1,4):5, (0, 0):0, (-1, 3):3 }
for test, result in tests.items():
    print 'test: adding', test, '==', result, '---', add(*test) == result

There is no other way to call add, other than manually doing something like add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
    return Car(*args)

This is also useful when you want to call a superclass' constructor.

I find this particularly useful for storing arguments for a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b):
    return a + b 

tests = { (1,4):5, (0, 0):0, (-1, 3):3 } 

for test, result in tests.items():
    print('test: adding', test, '==', result, '---', add(*test) == result)

There is no other way to call add, other than manually doing something like add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
    return Car(*args)

This is also useful when you want to call the constructor of a superclass.

I find this particularly useful for when you want to 'store' a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b): return a + b
tests = { (1,4):5, (0, 0):0, (-1, 3):3 }
for test, result in tests.items():
   print 'test: adding', test, '==', result, '---', add(*test) == result
def add(a, b): return a + b
tests = { (1,4):5, (0, 0):0, (-1, 3):3 }
for test, result in tests.items():
    print 'test: adding', test, '==', result, '---', add(*test) == result

There is no other way to call add, other than manually doing something like add(test[0], test[1])add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix')myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix')Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
   return Car(*args)
def make_car(*args):
    return Car(*args)

This is also useful when you want to call a superclass' constructor.

I find this particularly useful for when you want to 'store' a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b): return a + b
tests = { (1,4):5, (0, 0):0, (-1, 3):3 }
for test, result in tests.items():
   print 'test: adding', test, '==', result, '---', add(*test) == result

There is no other way to call add, other than manually doing something like add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
   return Car(*args)

This is also useful when you want to call a superclass' constructor.

I find this particularly useful for when you want to 'store' a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b): return a + b
tests = { (1,4):5, (0, 0):0, (-1, 3):3 }
for test, result in tests.items():
    print 'test: adding', test, '==', result, '---', add(*test) == result

There is no other way to call add, other than manually doing something like add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
    return Car(*args)

This is also useful when you want to call a superclass' constructor.

Source Link
Donald Miner
  • 39.6k
  • 9
  • 96
  • 118

I find this particularly useful for when you want to 'store' a function call.

For example, suppose I have some unit tests for a function 'add':

def add(a, b): return a + b
tests = { (1,4):5, (0, 0):0, (-1, 3):3 }
for test, result in tests.items():
   print 'test: adding', test, '==', result, '---', add(*test) == result

There is no other way to call add, other than manually doing something like add(test[0], test[1]), which is ugly. Also, if there are a variable number of variables, the code could get pretty ugly with all the if-statements you would need.

Another place this is useful is for defining Factory objects (objects that create objects for you). Suppose you have some class Factory, that makes Car objects and returns them. You could make it so that myFactory.make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'), then returns it.

def make_car(*args):
   return Car(*args)

This is also useful when you want to call a superclass' constructor.