Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct;100(Pt 2):175-185.
doi: 10.1016/j.foodres.2017.08.029. Epub 2017 Aug 15.

Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins

Affiliations

Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins

Cansu Ekin Gumus et al. Food Res Int. 2017 Oct.

Abstract

Emulsion-based delivery systems are being developed to incorporate ω-3 fatty acids into functional foods and beverages. There is interest in formulating these delivery systems from more sustainable and label-friendly ingredients. The aim of this study was therefore to examine the impact of plant-protein emulsifiers on the oxidative stability of 1wt% fish oil-in-water emulsions. Fish oil emulsions stabilized by three types of legume protein (lentil, pea, and faba bean) were produced using a high-pressure microfluidizer. The formation of primary (peroxides) and secondary (TBARS) lipid oxidation products was measured when the emulsions were stored at 37°C under accelerated (+100μM iron sulfate) or non-accelerated (no added iron) conditions for 21 or 33days, respectively. The particle size, charge and microstructure of the emulsions were monitored during storage using light scattering and microscopy to detect changes in physical stability. Emulsions stabilized by whey protein isolate, a commonly used animal-based protein, were utilized as a control. The emulsions formed using whey protein had smaller initial particle sizes, better physical stability, and slightly better stability to lipid oxidation than the ones formed using plant-based proteins. The impact of protein location (adsorbed versus non-adsorbed) on the oxidative stability of the emulsions was also investigated. The presence of non-adsorbed proteins inhibited lipid oxidation, presumably by binding transition metals and reducing their ability to interact with ω-3 fatty acids in the lipid droplets. Overall, these results have important implications for fabricating emulsion-based delivery systems for bioactive lipids, e.g., they indicate that including high levels of non-adsorbed proteins could improve oxidative stability.

Keywords: Emulsion; Legume protein; Lipid oxidation; Natural emulsifier; Omega-3 oils; Pulse protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources