Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan 21;12(1):3.
doi: 10.1186/s12970-014-0064-5. eCollection 2015.

Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein

Affiliations

Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein

Nicolas Babault et al. J Int Soc Sports Nutr. .

Abstract

Background: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program.

Methods: One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer.

Results: Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups.

Conclusions: In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products.

Trial registration: The present trial has been registered at ClinicalTrials.gov (NCT02128516).

Keywords: Biceps brachii; Feeding; Hypertrophy; Muscle strength; Muscle thickness; Nutralys.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Illustration of the experimental procedure.
Figure 2
Figure 2
CONSORT diagram outlining participants’ inclusion and drop out.
Figure 3
Figure 3
Changes in biceps brachii thickness (mm) during the experimental protocol. $: Significant difference within each group compared with D0 (P < 0.0001). £: Tending towards significance compared with D42 for the Pea group only (P = 0.09). *: Between group comparison between D0 and D84 approaching significance (P = 0.09).
Figure 4
Figure 4
Sensitivity analysis for biceps brachii thickness (mm) during the experimental protocol. Data represent subjects with the 1-RM performance <25 kg at D0. Samples sizes are n = 17, 31 and 20 for the Pea, Whey and Placebo groups, respectively. $: Significant difference within each group compared with D0 (P < 0.05 – P < 0.0001). £: Significant difference compared with D42 for the Pea group only (P < 0.05). *: Between group comparison between D0 and D84 (P < 0.05).

Similar articles

Cited by

References

    1. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: Influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 2009;106:1692–701. doi: 10.1152/japplphysiol.91351.2008. - DOI - PubMed
    1. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273:E99–107. - PubMed
    1. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268:E514–20. - PubMed
    1. Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol (1985) 1992;73:1383–8. - PubMed
    1. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. Control of the size of the human muscle mass. Annu Rev Physiol. 2004;66:799–828. doi: 10.1146/annurev.physiol.66.052102.134444. - DOI - PubMed

Associated data