​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​Mechanical Engineering Program

The Mechanical Engineering Program course curriculum is modern and rigorous. The courses in the program provide a solid foundation in subjects such as mechanical behavior of engineering materials, continuum mechanics, thermodynamics, experimental and numerical combustion, computational fluid dynamics and control theory. Our graduates are technically well trained to be productive members of the modern world society at large and specifically suited for research careers in academia, industry and government research laboratories.
​We place a strong emphasis on class learning coupled with innovative research in a variety of areas. ​


Summary of M.Sc. and Ph.D. Requirements:

ME_requirements_2023_2024

 

Summary of Program Timelines:

ME_timeline_2023_2024

 

 

Assessment Test

Students are admitted to KAUST from a wide variety of programs and backgrounds. In order to facilitate the design of an appropriate study plan for each individual student, all incoming M.Sc. students will be required to take a written assessment during orientation week. There is no grade for the assessment. The purpose of the assessment is to determine whether students have mastered the prerequisites for undertaking graduate level courses taught in the program. The Academic Advisor uses the results of the assessments to design, if necessary, a remedial study plan with a list of courses aimed at addressing content areas that may impede a student from successful completion of the degree requirements

Students are encouraged to prepare for the assessment by refreshing the general knowledge gained from their undergraduate education before arriving at KAUST.

Students will be tested on the following subjects:

1. Engineering Mathematics

2. Physics and Mechanics

3. Chemistry and Thermodynamics

Each examination is 25 minutes long, consists of 12 multiple choice questions, and are taken one after the other in the week before the semester formally starts. All examinations are taken online using your KAUST Blackboard account.

In what follows, an outline of the material covered in each of these examinations is given in the document and below.

Engineering Mathematics

1. Concept of the limit and its properties. The calculation of limits. One- and two-sided limits.
Continuity. The Intermediate Value Theorem.
2. Definition of the derivative. Differentiation from first principles. Derivatives for standard
functions including the exponential, logarithmic, trigonometric, and hyperbolic functions.
Product, quotient, and chain rules. Higher-order derivatives. Derivatives of inverse
functions. Implicit and parametric differentiation. The Mean Value Theorem and Rolle’s
theorem. Differentiability.
3. Application of the derivative to finding the gradient of a tangent to a curve. Stationary
points. Maxima and minima problems. The differential and its application to errors. Rates of
change problems.
4. The primitive function and anti-differentiation. The indefinite integral. Techniques of
integration including substitution, parts, partial fractions, trigonometric substitutions, and t-
substitutions.
5. The definite integral and Riemann integration. Application of the integral to area and
volume. The first and second Fundamental Theorems of Calculus. Improper integrals.
6. Sequences and infinite series. The geometric and telescoping series. Alternating series.
Convergence and divergence of an infinite series. Test for convergence including the nth
term test, direct and limit comparison tests, the integral test, ratio and root tests, alternating
series test. Absolute and conditional convergence. The Alternating Series Estimation
Theorem.
7. Power series. Properties of power series. Radius of convergence. Taylor and Maclaurin
series. Application of power series. Taylor polynomials.
8. Complex numbers, Argand diagram, modulus-argument and polar forms, de Moivre’s
theorem, exponential form.
9. Vectors. Vector addition and multiplication by a scalar. Properties of vectors. Unit vectors
and direction angles. The scalar dot and vector cross products and their associated
properties. The scalar triple product. Vector identities. Application of vectors to three-
dimensional analytic geometry. Equations of lines and planes in space.

Recommended Reading Material
1. Calculus, J. Stewart. Eight Edition (2015, Cengage Learning).
2. How to Integrate It: A Practical Guide to Finding Elementary Integrals, S. M. Stewart
(2018, Cambridge University Press).

Physics component
1. Electric charge. Electric fields. Coulomb's law.
2. Gauss’ law and applications of this law.
3. Electric potential. Capacitance and dielectrics.
4. Current, resistance, and resistivity.
5. Direct current circuits. Voltmeters and ammeters (both ideal and real). RC circuits.
6. Magnetic fields. Gauss’ law for magnetism.
7. Magnetic forces. Sources of the magnetic field. The Biot-Savart law and Ampère’s
law.
8. Electromagnetic induction. Faraday’s law. Lenz’ law.
9. Displacement current. Maxwell’s equations.

Mechanics component
1. Statics of particles. Forces and moments (torques).
2. Equilibrium of rigid bodies. Centres of mass and centroids
3. Moments of inertia.
4. Stress and strain due to axial loading. Torsion
5. Pure bending. Beam analysis
6. Kinematics of particles (using energy and momentum methods). Newton’s second
law.
7. Planar kinematics of rigid bodies.
8. Planar kinetics of rigid bodies (using equations of motion and energy and momentum
methods).

Recommended Reading Material
1. Sears and Zemanskys University Physics: With Modern Physics. Young, H. D., Freedman,
R. A., Ford, A. L., and Sears, F. W. (Addison-Wesley, 2021).
2. Vector Mechanics for Engineers: Statics and Dynamics (Twelfth edition). Ferdinand P. Beer,
E. Russell Johnston, David F. Mazurek, Phillip J. Cornwall, and Brian P. Self (McGraw-Hill,
2019).

Chemistry component
1. Matter and energy. What is chemistry? Atoms, molecules, and ions. Substances, ele-
ments, and mixtures. Changes and properties of matter. Periodic Table, Periodic Law.
Chemistry divisions. The International Union of Pure and Applied Chemistry (IUPAC).
2. Scientific method: observation, law, hypothesis, experiment, data, results, and theory.
Accuracy and precision. Significant figures. Scientific notation. Basic experimental
quantities. Unit conversion. Basic statistics for data analysis.
3. Timeline of atomic theories and models. Elementary particles. Quantum numbers for
different orbitals. Electron configuration of atoms. Valence electrons and the octet rule.
4. Atomic/ionic radius. Electron affinity. Electronegativity. Ionization energy.
Polarizability. Isoelectronic configurations.
5. Lewis structures. Covalent, ionic, and metallic bonds.
6. Molecular geometry. The valence shell electron pair repulsion (VSEPR) theory.
7. Intermolecular interactions. Phase changes. Gaseous, liquid, and solid states.

Thermodynamics component
1. Fundamentals of thermodynamics.
2. Work and heat. The zeroth and first laws of thermodynamics.
3. Pure substances.
4. The second law of thermodynamics.
5. An ideal gas.
6. Carnot cycle.
7. Entropy.

Recommended Reading Material
1. Denniston, K. J.; Topping, J. J.; Dorr, D. R. Q.; Caret, R. L., General, Organic, and
Biochemistry, McGraw-Hill, 10th edition, 2020.
2. Smoot, R. C.; Smith, R. G.; Price, J., Chemistry: A Modern Course, Merrill Publishing
Company, 1990.
3. Chang, R.; Overby, J., Chemistry, McGraw-Hill, 13th edition, 2019.
4. Goldberg, D. E., Fundamentals of Chemistry, McGraw-Hill, 5th edition, 2007.
5. Gaffney, J.; Marley, N., General Chemistry for Engineers, Elsevier, 1st edition, 2018.
6. Çengel, Y. A.; Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill, 5th
edition, 2006.

 

Courses

Laboratory Courses
It is imperative that ME students possess specific laboratory skills to have successful careers in academia and industry. All MS ME students must register and pass ME 205 which is is designed to train students in basic laboratory skills relevant to Mechanical Engineering.

 

Students must pass at least two graduate-level courses (i.e., courses numbered 200 and higher) in applied mathematics (AMCS) or statistics (STAT). It is recommended that students take the following courses which will provide a strong foundation of the skills required for a research career in ME.

AMCS 201Applied Mathematics I

3

AMCS 202Applied Mathematics II

3

Other courses listed in the AMCS/ STAT master's program can be taken to fulfill this requirement.

 

The core courses are designed to provide students with the background needed to establish a solid foundation in the program area. To complete these 12 credit hours in mechanical engineering, students should register for four core courses from the following list:

ME 200AIncompressible Flows

3

ME 200BViscous and Unsteady Flows

3

ME 211AMechanics of Structures and Solids

3

ME 211BHomogenization and Upscaling Techniques in Solid Mechanics

3

ME 212Continuum Mechanics

3

ME 221A/ECE 271ALinear Control Systems

3

ME 221B/ECE 271BNon Linear Control Systems

3

ME 222A/ECE 272AMechatronics and Microsystems

3

ME 222B/ECE 272BMechatronics and Intelligent Systems

3

ME 241Classical Thermodynamics

3

ME 242Theoretical and Numerical Heat Transfer

3

ME 243Statistical Thermodynamics

3

Elective Courses allow students to tailor their educational experience to meet individual research and educational objectives with the permission of the Academic Advisor. It is advised that students take courses from the ME program as per the list below:

ME 214/ERPE 270Experimental Methods

3

ME 226/ECE 263Cyber-Physical Systems

3

ME 244Combustion Fundamentals

3

ME 252Fundamentals of Circular Carbon Strategies

3

ME 253Sustainable Thermal Technologies

3

ME 254Renewable Fluid Power

3

ME 256Electrochemical Energy Systems

3

ME 261Applications of Atmospheric Pressure Plasmas

3

ME 302Multi-Phase Flows

3

ME 304Experimental Methods in Fluid Mechanics

3

ME 305AComputational Fluid Dynamics

3

ME 305BAdvanced Computational Fluid Dynamics

3

ME 306Hydrodynamic Stability

3

ME 307Turbulence

3

ME 317Mechanics of Composite Materials and Structures

3

ME 319Computational Solid Mechanics

3

ME 326/ECE 376Robust Control

3

ME 340Advanced Combustion Theory

3

ME 342Chemical Kinetics

3

ME 346Turbulent Combustion

3

ME 348Introduction to Spectroscopy and Laser Diagnostics

3

ME 376Introduction to Combustion Engines

3

ME 377Advanced Internal Combustion Engines

3

ME 378Experimental Combustion

3

ME 394Contemporary Topics in Mechanical Engineering

3

200-300 level courses from other KAUST programs upon approval of the Academic Advisor.

PhD Courses Certificate

 

On the way to graduation, students often avoid the opportunity to dive deeper into subjects they are interested in. It may be because they have already completed their mandatory course requirement and their thesis work is demanding. The lack of recognition of their courses beyond the PhD course requirements goes unnoticed and is challenging to share with future employers. The ME Program offers many courses on the cutting edge of research in many areas, and it encourages students to deepen their understanding of multiple areas of mechanical engineering. Therefore, the ME Program has developed certification tracks that students can pursue in addition to their degree requirements. Once a student completes the requirements of a specific track, the student will be awarded an official certificate signed by the chair of the program. Students who complete the certifications are better prepared to discuss, research, review, and teach in those areas. Students must take 4 courses in a track, of which at least 3 must be taken for credit and no more than 1 as an official audit. Students must maintain a B average with no one course scoring less than a B- within the certification. The seven tracks and the courses included therein are given below.

 

List of courses