Skip to main content

All Questions

1 vote
2 answers
100 views

Why must a constraint force be normal?

If we impose that a particle follows a holonomic constraint, so that it always remains on a surface defined by some function $f(x_1,x_2,x_3)=0$ with $f:\mathbb{R^3}\rightarrow\mathbb{R}$, we get a ...
16π Cent's user avatar
  • 101
2 votes
1 answer
89 views

Time derivative of a "general" vector $\vec A$ in an accelerating frame: what about e.g. velocity $\vec v$?

According to Morin "Classical Mechanics" (Section 10.1, page 459), the derivative of a general vector $\vec A$ in an accelerating frame may be given as $$\frac{d\vec A}{dt}=\frac{\delta \vec ...
klonedrekt's user avatar
2 votes
5 answers
263 views

Why does $\vec{r}\cdot\dot{\vec{r}}=r\dot{r}$?

Why is $$\vec{r}\cdot\dot{\vec{r}}=r\dot {r}$$ true? Before saying anything, I have seen the proofs using spherical coordinates for $$\dot{\vec {r}}= \dot{r}\vec{u_r}+r\dot{\theta}\vec{u_\theta}+r\sin\...
Ulshy's user avatar
  • 69
2 votes
1 answer
270 views

Having trouble deriving the exact form of the Kinematic Transport Theorem

The Kinematic transport theorem is a very basic theorem relating time derivatives of vectors between a non rotating frame and another one that's rotating with respect to it with a uniform angular ...
Amit's user avatar
  • 1,450
1 vote
1 answer
93 views

How to define differentiation of a time-dependent vectors with respect to a specific reference frame in a coordinate-free manner?

It is usual in classical mechanics to introduce the derivative of a time-dependent vector with respect to a reference frame. This is accomplished through the use of a basis that is fixed with respect ...
jvf's user avatar
  • 245
1 vote
3 answers
273 views

Derivative with respect to vector of a function depending on vectors

I've been trying to understand this concept for hours without any success. I found similar questions on this forum (Derivative with respect to a vector is a gradient?) but I still don't understand. ...
The Lion King's user avatar