Skip to main content

All Questions

2 votes
3 answers
69 views

$\int \vec{E} \cdot \vec{dA} = (E)(A)$?

I've seen this kind of simplification done very frequently in Gauss's law problems, assuming E is only radial and follows some "simple" geometry: $$\oint\vec{E}\cdot\vec{dA}=\frac{Q_{enc}}{\...
JBatswani's user avatar
  • 187
1 vote
1 answer
40 views

Electric field at a point created by a charged object (derivation/integration process)

I was hoping someone can help me understand the math behind the electric field (electrostatics). I have gaps in my knowledge about integrals and derivatives (university moves very quickly and it has ...
1899DVX's user avatar
  • 19
0 votes
2 answers
123 views

Why is the differential form of Gauss's Law equivalent to the integral form?

I can understand the Differential form of Gauss's Law βˆ‡β‹…π„= $\frac{ρ}{Ι›_0}$ as saying that the source of electric field vectors or flow disperse(The divergence of the electric field) is equal to the ...
244529's user avatar
  • 1
4 votes
0 answers
58 views

Energy in electric field of an electron?

I am just trying to get an intuition for the Griffiths equation no. 2.45, where work done to establish a field E is given by Say we want to solve it for electric field due to an electron (point-charge)...
SACHLEEN SINGH's user avatar
0 votes
0 answers
45 views

Force due to ring of charge [duplicate]

I am currently taking Physics II and have recently been focused on this problem: Suppose there is a ring of uniform linear charge density $\:\lambda\:$ and radius R and a point P at a height $\: z_{_\...
noneofyour's user avatar
6 votes
3 answers
590 views

Equation describing the electric field lines of opposite charges

Right now I am preparing for IPhO and the book I had mentions about the "Field lines" as a curve which has the property which any tangent line to the curve represents the direction of the ...
CuSO4 NaOH's user avatar
0 votes
1 answer
47 views

Trying to find the magnetic force applied by an infinite wire on a circuit both carrying different currents

The problem I'm trying to solve is: We have: An infinite wire carrying the current I and creating the magnetic field: $\vec{B}(M) = \frac{\mu_0I}{2\pi\rho}\vec{e}_{\phi}$ A square shaped loop ...
JohnMaths27's user avatar
1 vote
1 answer
152 views

Unknown integral identity in derivation of first Maxwell equation

Reference: "Theoretische Physik" (2015) by Bartelsmann and others, page 391, equation (11.23). While deriving the first Maxwell equation based on Coulomb's law, the authors are using the ...
Max Herrmann's user avatar
0 votes
1 answer
220 views

How should I interpret these integrals from Griffiths 'Intro to Electrodynamics'?

The book defines the electric field at a point $P$ a distance $r$ due to a point charge $q$ as: $$ E = \frac{1}{4\pi \epsilon _0} \frac{q}{r^2}$$ it then tells us that the electric field at a point $P$...
one two's user avatar
  • 345
1 vote
2 answers
76 views

Question regarding eliminating volume term from Gauss Law

Gauss law is given by $$\oint_{\partial S}\vec E\cdot d\vec {A}=\dfrac{q_\text{enclosed}}{Ξ΅_0}.$$ $$q_\text{enclosed}=\iiint \rho\ dV.$$ For a closed surface $$\oint_{\partial S}\vec E\cdot d\vec{A}=\...
Harry Case's user avatar
1 vote
1 answer
113 views

Proof that $\nabla \times E = 0$ using Stoke's theorem [closed]

One way that Jackson proves that $\nabla \times E = 0$ is the following: $$ F = q E $$ $$ W = - \int_A^B F \cdot dl = - q \int_A^B E \cdot dl = q \int_A^B \nabla \phi \cdot dl = q \int_A^B d \phi = ...
ngc1300's user avatar
  • 284
0 votes
0 answers
20 views

Using Variation of Energy for a Dielectric to define the Electric Field

I have been reading through Zangwill's Modern Electrodynamics on my own, and I am confused about something in section 6.7.1, concerning the variation of total energy $U$ of a dielectric in the ...
pherytic's user avatar
2 votes
3 answers
235 views

Electric field at a very distant point of an wire from generic point in space

I calculated the electric field at a generic point in the space $P(a,b,c)$ due to an wire with charge density $\lambda$, constant and positive, length $L$, with axis in $z$ direction and origin in the ...
Physics_Q's user avatar
0 votes
1 answer
358 views

How is this possible (electric field integral)?

In the electric field subject, $dq$ is ok to integral. How is this possible? $Q$ is not even changing variable. Can you explain its math? $$E=k\int \frac{dq}{r^2}.$$
user139907's user avatar
0 votes
0 answers
171 views

2D Fourier transform of 3D Yukawa potential

I am basically trying to take the 2D Fourier transform of the 3D Yukawa potential. Hence, I have the following function \begin{equation} f(\textbf{r}-\textbf{r}')=\frac{e^{-a|\textbf{r}-\textbf{r}'|}}{...
sined's user avatar
  • 137

15 30 50 per page