Skip to main content
added 14 characters in body
Source Link
Cosmas Zachos
  • 64.2k
  • 6
  • 107
  • 243

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m ~ 1 eV, and a Planck mass M ~ $10^{27}$ eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrinuum atoms of $$ r \sim M^2/m^3 \sim 10^{54}/\hbox{eV} \sim 10^{47} ~~\hbox{m}. $$
Compare this to the present diameter, $10^{27}$ m, of the entire universe...

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m ~ 1 eV, and a Planck mass M ~ $10^{27}$ eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrinuum atoms of $$ r \sim M^2/m^3 \sim 10^{54}/\hbox{eV} \sim 10^{47} ~~\hbox{m}. $$
Compare this to the present diameter of the entire universe...

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m ~ 1 eV, and a Planck mass M ~ $10^{27}$ eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrinuum atoms of $$ r \sim M^2/m^3 \sim 10^{54}/\hbox{eV} \sim 10^{47} ~~\hbox{m}. $$
Compare this to the present diameter, $10^{27}$ m, of the entire universe...

added 25 characters in body
Source Link
Cosmas Zachos
  • 64.2k
  • 6
  • 107
  • 243

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m~ 1eVm ~ 1 eV, and a Planck mass MM ~ $10^{27}$eV eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrinoneutrinuum atoms of $$ r \sim M^2/m^3 \sim 10^{54}/eV \sim 10^{47} m. $$$$ r \sim M^2/m^3 \sim 10^{54}/\hbox{eV} \sim 10^{47} ~~\hbox{m}. $$
Compare this to the present diameter of the entire universe...

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m~ 1eV, and a Planck mass M ~ $10^{27}$eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrino atoms of $$ r \sim M^2/m^3 \sim 10^{54}/eV \sim 10^{47} m. $$
Compare this to the present diameter of the entire universe...

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m ~ 1 eV, and a Planck mass M ~ $10^{27}$ eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrinuum atoms of $$ r \sim M^2/m^3 \sim 10^{54}/\hbox{eV} \sim 10^{47} ~~\hbox{m}. $$
Compare this to the present diameter of the entire universe...

Source Link
Cosmas Zachos
  • 64.2k
  • 6
  • 107
  • 243

A quick back-of-the envelope estimate, in the style of Fermi:

For a neutrino mass of m~ 1eV, and a Planck mass M ~ $10^{27}$eV, and supplanting the newtonian potential $(m/M)^2/r$ for the Coulomb potential $e^2/r$, yields a Bohr radius for such neutrino atoms of $$ r \sim M^2/m^3 \sim 10^{54}/eV \sim 10^{47} m. $$
Compare this to the present diameter of the entire universe...