Skip to main content

You are not logged in. Your edit will be placed in a queue until it is peer reviewed.

We welcome edits that make the post easier to understand and more valuable for readers. Because community members review edits, please try to make the post substantially better than how you found it, for example, by fixing grammar or adding additional resources and hyperlinks.

10
  • 4
    $\begingroup$ "Wheel locking" is maybe not 100% idiomatic but any English speaker would understand what you meant; after all, ABS stands for "anti-lock braking system". The more common term for losing tracking such that the wheels are not rotating but the car is still moving is "skidding". If you are skidding on purpose to gain a speed advantage in cornering, that's "drifting", and if you're drifting to make a circular track on the ground for fun, that's "doing donuts". English is weird. wikihow.com/Do-Donuts $\endgroup$ Commented Dec 5, 2018 at 18:34
  • $\begingroup$ I like this answer because it gets at the fundamental process. Sure, a property of friction is that it is a motion-resisting force, but this shows why. You could imagine a whole range of other kinds of energy transformations that would all produce the same behavior. It's useful, for example, to compare this behavior to the behavior of a regenerative braking system. Rather than being transformed into heat, some of the car's kinetic energy is transformed into chemical potential energy. In both cases, the car stops moving because it effectively runs out of kinetic energy. $\endgroup$
    – senderle
    Commented Dec 6, 2018 at 0:26
  • $\begingroup$ Some designer wheels freely spin while the vehicle is stopped. I would add usually to the part about while the car is advancing and technically we are talking about the hub not the wheels and yes some hubs just disengage. Finally some hybrids use the thermal energy and the other properties depending on the caliper and hub arraignment to regenerate the battery. $\endgroup$
    – Jay
    Commented Dec 6, 2018 at 2:23
  • $\begingroup$ And i think its because the master cylinder is applying constant pressure through the calipers to the hub which holds the car still preventing it from moving most likely even if you the accelerator and the brakes at the same time due to the weight of the car and amount of pressure being applied by the master cylinder. (Unless you got a powerful engine or crappy brakes) $\endgroup$
    – Jay
    Commented Dec 6, 2018 at 2:32
  • $\begingroup$ It's actually quite puzzling to me why struts and suspension don't also contribute to the electrical regeneration but that's another topic. $\endgroup$
    – Jay
    Commented Dec 6, 2018 at 2:34