Portrait de Siva Reddy

Siva Reddy

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique et Département de linguistique

Biographie

Siva Reddy est professeur adjoint en informatique et linguistique à l’Université McGill. Ses travaux portent sur les algorithmes qui permettent aux ordinateurs de comprendre et de traiter les langues humaines. Il a fait ses études postdoctorales avec le Stanford NLP Group. Son expertise inclut la construction de symboliques linguistiques et induites et de modèles d’apprentissage profond pour le langage.

Étudiants actuels

Collaborateur·rice de recherche
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - Cambridge University

Publications

Faithfulness Measurable Masked Language Models
Scope Ambiguities in Large Language Models
Gaurav Kamath
Sebastian Schuster
Sowmya Vajjala
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (voir plus) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (voir plus) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WebLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx.
When does word order matter and when doesn't it?
Xuanda Chen
Timothy John O'donnell
Language models (LMs) may appear insensitive to word order changes in natural language understanding (NLU) tasks. In this paper, we propose … (voir plus)that linguistic redundancy can explain this phenomenon, whereby word order and other linguistic cues such as case markers provide overlapping and thus redundant information. Our hypothesis is that models exhibit insensitivity to word order when the order provides redundant information, and the degree of insensitivity varies across tasks. We quantify how informative word order is using mutual information (MI) between unscrambled and scrambled sentences. Our results show the effect that the less informative word order is, the more consistent the model's predictions are between unscrambled and scrambled sentences. We also find that the effect varies across tasks: for some tasks, like SST-2, LMs' prediction is almost always consistent with the original one even if the Pointwise-MI (PMI) changes, while for others, like RTE, the consistency is near random when the PMI gets lower, i.e., word order is really important.
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
StarCoder: may the source be with you!
Raymond Li
Loubna Ben allal
Yangtian Zi
Niklas Muennighoff
Denis Kocetkov
Chenghao Mou
Marc Marone
Christopher Akiki
Jia LI
Jenny Chim
Qian Liu
Evgenii Zheltonozhskii
Terry Yue Zhuo
Thomas Wang
Olivier Dehaene
Mishig Davaadorj
Joel Lamy-Poirier
Joao Monteiro
Oleh Shliazhko
Nicolas Gontier … (voir 49 de plus)
Nicholas Meade
Armel Zebaze
Ming-Ho Yee
Logesh Kumar Umapathi
Jian Zhu
Ben Lipkin
Muhtasham Oblokulov
Zhiruo Wang
Rudra Murthy
Jason T Stillerman
Siva Sankalp Patel
Dmitry Abulkhanov
Marco Zocca
Manan Dey
Zhihan Zhang
N. Fahmy
Urvashi Bhattacharyya
Wenhao Yu
Swayam Singh
Sasha Luccioni
Paulo Villegas
Jan Ebert
M. Kunakov
Fedor Zhdanov
Manuel Romero
Tony Lee
Nadav Timor
Jennifer Ding
Claire S Schlesinger
Hailey Schoelkopf
Jana Ebert
Tri Dao
Mayank Mishra
Alex Gu
Jennifer Robinson
Sean Hughes
Carolyn Jane Anderson
Brendan Dolan-Gavitt
Danish Contractor
Daniel Fried
Yacine Jernite
Carlos Muñoz Ferrandis
Sean M. Hughes
Thomas Wolf
Arjun Guha
Leandro Von Werra
Harm de Vries
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs)… (voir plus), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.
Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model
Parishad BehnamGhader
Santiago Miret
Augmenting pretrained language models with retrievers to select the supporting documents has shown promise in effectively solving common NLP… (voir plus) problems, including language modeling and question answering, in an interpretable way. In this paper, we first study the strengths and weaknesses of different retriever-augmented language models (REALM,
Evaluating In-Context Learning of Libraries for Code Generation
Arkil Patel
Pradeep Dasigi
Using In-Context Learning to Improve Dialogue Safety
Nicholas Meade
Spandana Gella
Devamanyu Hazarika
Prakhar Gupta
Di Jin
Yang Liu
Dilek Hakkani-Tur
Are Diffusion Models Vision-And-Language Reasoners?
Benno Krojer
Elinor Poole-Dayan
Vikram Voleti
Text-conditioned image generation models have recently shown immense qualitative success using denoising diffusion processes. However, unlik… (voir plus)e discriminative vision-and-language models, it is a non-trivial task to subject these diffusion-based generative models to automatic fine-grained quantitative evaluation of high-level phenomena such as compositionality. Towards this goal, we perform two innovations. First, we transform diffusion-based models (in our case, Stable Diffusion) for any image-text matching (ITM) task using a novel method called DiffusionITM. Second, we introduce the Generative-Discriminative Evaluation Benchmark (GDBench) benchmark with 7 complex vision-and-language tasks, bias evaluation and detailed analysis. We find that Stable Diffusion + DiffusionITM is competitive on many tasks and outperforms CLIP on compositional tasks like like CLEVR and Winoground. We further boost its compositional performance with a transfer setup by fine-tuning on MS-COCO while retaining generative capabilities. We also measure the stereotypical bias in diffusion models, and find that Stable Diffusion 2.1 is, for the most part, less biased than Stable Diffusion 1.5. Overall, our results point in an exciting direction bringing discriminative and generative model evaluation closer. We will release code and benchmark setup soon.
The Impact of Positional Encoding on Length Generalization in Transformers
Amirhossein Kazemnejad
Inkit Padhi
Karthikeyan Natesan
K. Ramamurthy
Payel Das
Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the developmen… (voir plus)t of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.