Skip to main content
deleted 1494 characters in body
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177

The short proofs of the following twofive lemmas were suggested by Pace Nielsen in his comments below.

Proof. Observe that $pr_1=dom[A]$ where $A=\{((x,y),((a,b),c)):x=((a,b),c),\;y=a\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),((a,b),c)):x=((a,b),c)\}$ and $A_2=\{((x,y),((a,b),c)):y=a\}$.

Observe that $\pi_3[A_1]=\{((((a,b),c),x),y):x=((a,b),c)\}=\{(((a,b),c),x):x=((a,b),c)\}\times V=((V^3\times V)\cap I)\times V$, which implies that $A_1$ exists. Here $V^3=((V\times V)\times V)$.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=a\}=\{(y,((a,b),c)):y=a\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=a\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=a\}=C\times V$ where $C=\{(y,(a,b)):y=a\}$. Observe that $\pi_2[C]=\{((a,b),y):y=a\}$$\pi_3[pr_1]=\{((a,(a,b)),c):a,b,c\in V\}=\pi_2[p_1]\times V$ and $\pi_3[\pi_2[C]]=\{((y,a),b):y=a\}=I\times V$. Therefore,hence the classes $C,B$$\pi_3[pr_1]$ and $A_2$$pr_1$ exist by Lemma 4 and so does the class $pr_1=dom[A_1\cap A_2]$Axioms of Inversion, Product, and Circular Permutation.    $\quad\square$

Proof. Observe that $pr_2=dom[A]$ where $A=\{((x,y),((a,b),c)):x=((a,b),c),\;y=b\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),((a,b),c)):x=((a,b),c)\}$ and $A_2=\{((x,y),((a,b),c)):y=b\}$. By analogy with Lemma 5 we can prove that the class $A_1$ exists.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=b\}=\{(y,((a,b),c)):y=b\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=b\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=b\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=b\}=C\times V$ where $C=\{(y,(a,b)):y=b\}$. Observe that $\pi_2[C]=\{((a,b),y):y=b\}$$\pi_3[pr_2]=\{((b,(a,b)),c):a,b,c\in V\}=\pi_2[p_2]\times V$ and $\pi_3^2[\pi_2[C]]=\{((b,y),a):b=y\}=I\times V$. Therefore,hence the classes $C,B$$\pi_3[pr_2]$ exist by Lemma 4 and $A_2$Axioms of Inversion, Product, and finally $pr_2$ existCircular Permutation. $\quad\square$

Proof. Observe that $pr_3=dom[A]$ where $A=\{((x,y),((a,b),c)):x=((a,b),c),\;y=c\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),((a,b),c)):x=((a,b),c)\}$$\pi^{-1}_3[pr_3]=\{((c,c),(a,b)):a,b,c\in V\}=I\times(V\times V)$ and $A_2=\{((x,y),((a,b),c)):y=c\}$. By analogy with Lemma 5 we can prove thathence the class $A_1$ exists.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=c\}=\{(y,((a,b),c)):y=c\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=c\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=c\}$, $\pi^2_3[\pi_2[B]]=\{((c,y),(a,b)):c=y\}=I\times (V\times V)$. Then $A_2$ and$pr_3$ exists by Lemma 2 and so doesthe Axiom of Product by $pr_3$$V$. $\quad\square$

The short proofs of the following two lemmas were suggested by Pace Nielsen in his comments below.

Proof. Observe that $pr_1=dom[A]$ where $A=\{((x,y),((a,b),c)):x=((a,b),c),\;y=a\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),((a,b),c)):x=((a,b),c)\}$ and $A_2=\{((x,y),((a,b),c)):y=a\}$.

Observe that $\pi_3[A_1]=\{((((a,b),c),x),y):x=((a,b),c)\}=\{(((a,b),c),x):x=((a,b),c)\}\times V=((V^3\times V)\cap I)\times V$, which implies that $A_1$ exists. Here $V^3=((V\times V)\times V)$.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=a\}=\{(y,((a,b),c)):y=a\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=a\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=a\}=C\times V$ where $C=\{(y,(a,b)):y=a\}$. Observe that $\pi_2[C]=\{((a,b),y):y=a\}$ and $\pi_3[\pi_2[C]]=\{((y,a),b):y=a\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ exist and so does the class $pr_1=dom[A_1\cap A_2]$.  $\quad\square$

Proof. Observe that $pr_2=dom[A]$ where $A=\{((x,y),((a,b),c)):x=((a,b),c),\;y=b\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),((a,b),c)):x=((a,b),c)\}$ and $A_2=\{((x,y),((a,b),c)):y=b\}$. By analogy with Lemma 5 we can prove that the class $A_1$ exists.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=b\}=\{(y,((a,b),c)):y=b\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=b\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=b\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=b\}=C\times V$ where $C=\{(y,(a,b)):y=b\}$. Observe that $\pi_2[C]=\{((a,b),y):y=b\}$ and $\pi_3^2[\pi_2[C]]=\{((b,y),a):b=y\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ and finally $pr_2$ exist. $\quad\square$

Proof. Observe that $pr_3=dom[A]$ where $A=\{((x,y),((a,b),c)):x=((a,b),c),\;y=c\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),((a,b),c)):x=((a,b),c)\}$ and $A_2=\{((x,y),((a,b),c)):y=c\}$. By analogy with Lemma 5 we can prove that the class $A_1$ exists.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=c\}=\{(y,((a,b),c)):y=c\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=c\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=c\}$, $\pi^2_3[\pi_2[B]]=\{((c,y),(a,b)):c=y\}=I\times (V\times V)$. Then $A_2$ and exists and so does $pr_3$. $\quad\square$

The short proofs of the following five lemmas were suggested by Pace Nielsen in his comments below.

Proof. Observe that $\pi_3[pr_1]=\{((a,(a,b)),c):a,b,c\in V\}=\pi_2[p_1]\times V$ and hence the classes $\pi_3[pr_1]$ and $pr_1$ exist by Lemma 4 and Axioms of Inversion, Product, and Circular Permutation.  $\quad\square$

Proof. Observe that $\pi_3[pr_2]=\{((b,(a,b)),c):a,b,c\in V\}=\pi_2[p_2]\times V$ and hence the classes $\pi_3[pr_2]$ exist by Lemma 4 and Axioms of Inversion, Product, and Circular Permutation. $\quad\square$

Proof. Observe that $\pi^{-1}_3[pr_3]=\{((c,c),(a,b)):a,b,c\in V\}=I\times(V\times V)$ and hence the class $pr_3$ exists by Lemma 2 and the Axiom of Product by $V$. $\quad\square$

Replaced proofs of Lemmas 3,4 by shorter proofs.
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177

Lemma 8. For any functions $F,G$ the class $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$$\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}$ exists. $\quad\square$

Proof. Observe that $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$ and apply the Axioms of Intersection and Domain. $\quad\square$

Lemma 8. For any functions $F,G$ the class $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$ exists. $\quad\square$

Lemma 8. For any functions $F,G$ the class $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}$ exists.

Proof. Observe that $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$ and apply the Axioms of Intersection and Domain. $\quad\square$

Replaced proofs of Lemmas 3,4 by shorter proofs.
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177

The idea is to prove that the function $f:((x,y),z))\mapsto ((x,z),y)$ exists (as a class) and then observe that for any class $X$, the class $\{((x,y),z):((x,z),y)\in X\}$ coincides with the image $f[X]$, which is equal to $dom((f\cap (X\times V))^{-1})$ so exists by application of Axioms of Product, Intersection, Inversion, and Domain. As was observed by Emil Jeřábek in his comment, the Axiom of Intersection follows from the Axiom of Complement because $X\cap Y=X\setminus(X\setminus Y)$ for any classes $X,Y$.

Proof. By Lemma 1, the class $S=\{(x,y):x\subseteq y\}$ exists. Since $I=S\cap\pi_2[S]$ (by the Axiom of Extensionality), the class $I$ exists by the Axioms of Inversion and Intersection. $\quad\square$

The short proofs of the following two lemmas were suggested by Pace Nielsen in his comments below.

Proof. Observe that $p_1=\{(x,y):\exists a\exists b\;x=(a,b),\;y=a\}=dom[A]$ where $A=\{((x,y),(a,b)):x=(a,b),\;y=a\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),(a,b)):x=(a,b)\}$ and $A_2=\{((x,y),(a,b)):y=a\}$.

Observe that $\pi_3[A_1]=\{(((a,b),x),y):x=(a,b)\}=\{((a,b),x):x=(a,b)\}\times V=(V^2\cap I)\times V$, which implies that $A_1$ exists. Here $V^2=V\times V$.

Observe that $\pi^2_3[A_2]=\{((y,(a,b)),x):y=a\}=\{(y,(a,b)):y=a\}\times V=B\times V$, where $B=\{(y,(a,b)):y=a\}$. Next, $\pi_2[B]=\{((a,b),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y,a),b):y=a\}=I\times V$. Therefore$\pi_3[p_1]=\{((a,a),b):a,b\in V\}=I\times V$, so the classes $B$ and $A_2$ exist$\pi_3[p_1]$ and the class $p_1$$p_1=\pi_3^2[\pi_3[p_1]]$ exist, too. $\quad\square$

Proof. Observe that $p_2=\{(x,y):\exists a\exists b\;(x=(a,b)\;\wedge\;y=b)\}=dom[A]$ where $A=\{((x,y),(a,b)):x=(a,b),\;y=b\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),(a,b)):x=(a,b)\}$ and $A_2=\{((x,y),(a,b)):y=b\}$.

Repeating the argument of the proof of Lemma 4$\pi^2_3[p_2]=\{((b,b),a):a,b\in V\}=I\times V$, we can show thatso the class $A_1$$p_2$ exists.

Observe that $\pi^2_3[A_2]=\{((y,(a,b)),x):y=b\}=\{(y,(a,b)):y=b\}\times V=B\times V$, where $B=\{(y,(a,b)):y=b\}$. Next, $\pi_2[B]=\{((a,b),y):y=b\}$, $\pi^2_3[\pi_2[B]]=\{((b,y),a):y=b\}=I\times V$. Therefore, the classes $B$ and $A_2$ exist and the class $p_2$ exist, too.$\quad\square$

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=a\}=\{(y,((a,b),c)):y=a\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=a\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=a\}=C\times V$ where $C=\{(y,(a,b)):y=a\}$. Observe that $\pi_2[C]=\{((a,b),y):y=a\}$ and $\pi_3[\pi_2[C]]=\{((y,a),b):y=a\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ exist and so does the class $pr_1=dom[A_1\cap A_2]$. $\quad\square$

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=b\}=\{(y,((a,b),c)):y=b\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=b\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=b\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=b\}=C\times V$ where $C=\{(y,(a,b)):y=b\}$. Observe that $\pi_2[C]=\{((a,b),y):y=b\}$ and $\pi_3^2[\pi_2[C]]=\{((b,y),a):b=y\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ and finally $pr_2$ exist. $\quad\square$

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=c\}=\{(y,((a,b),c)):y=c\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=c\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=c\}$, $\pi^2_3[\pi_2[B]]=\{((c,y),(a,b)):c=y\}=I\times (V\times V)$. Then $A_2$ and exists and so does $pr_3$. $\quad\square$

Lemma 8. For any functions $F,G$ the class $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$ exists. $\quad\square$

Then the classes $A_1$ and $A_2$ exist and so does the function $F\circ G$. $\quad\square$

Proof. Observe that \begin{multline*} f=\{(a,b):a,b\in V^3,\;pr_1(a)=pr_1(b), \;pr_2(a)=pr_3(b),\;pr_3(a)=pr_2(b)\}=\\ \{x\in V^3{\times}V^3:pr_1{\circ}p_1(x)=pr_1{\circ}p_2(x),\; pr_2{\circ}p_1(x)=pr_3{\circ} p_2(x),\;pr_3{\circ} p_1(x)=pr_2{\circ} p_2(x)\}\end{multline*} and apply Lemmas 3--9. $\quad\square$

The idea is to prove that the function $f:((x,y),z))\mapsto ((x,z),y)$ exists (as a class) and then observe that for any class $X$, the class $\{((x,y),z):((x,z),y)\in X\}$ coincides with the image $f[X]$, which is equal to $dom((f\cap (X\times V))^{-1})$ so exists by application of Axioms of Product, Intersection, Inversion, and Domain. As was observed by Emil Jeřábek in his comment the Axiom of Intersection follows from the Axiom of Complement because $X\cap Y=X\setminus(X\setminus Y)$ for any classes $X,Y$.

Proof. By Lemma 1, the class $S=\{(x,y):x\subseteq y\}$ exists. Since $I=S\cap\pi_2[S]$ (by the Axiom of Extensionality), the class $I$ exists by the Axioms of Inversion and Intersection.

Proof. Observe that $p_1=\{(x,y):\exists a\exists b\;x=(a,b),\;y=a\}=dom[A]$ where $A=\{((x,y),(a,b)):x=(a,b),\;y=a\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),(a,b)):x=(a,b)\}$ and $A_2=\{((x,y),(a,b)):y=a\}$.

Observe that $\pi_3[A_1]=\{(((a,b),x),y):x=(a,b)\}=\{((a,b),x):x=(a,b)\}\times V=(V^2\cap I)\times V$, which implies that $A_1$ exists. Here $V^2=V\times V$.

Observe that $\pi^2_3[A_2]=\{((y,(a,b)),x):y=a\}=\{(y,(a,b)):y=a\}\times V=B\times V$, where $B=\{(y,(a,b)):y=a\}$. Next, $\pi_2[B]=\{((a,b),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y,a),b):y=a\}=I\times V$. Therefore, the classes $B$ and $A_2$ exist and the class $p_1$ exist, too.

Proof. Observe that $p_2=\{(x,y):\exists a\exists b\;(x=(a,b)\;\wedge\;y=b)\}=dom[A]$ where $A=\{((x,y),(a,b)):x=(a,b),\;y=b\}$.

Write $A$ as $A=A_1\cap A_2$, where $A_1=\{((x,y),(a,b)):x=(a,b)\}$ and $A_2=\{((x,y),(a,b)):y=b\}$.

Repeating the argument of the proof of Lemma 4, we can show that the class $A_1$ exists.

Observe that $\pi^2_3[A_2]=\{((y,(a,b)),x):y=b\}=\{(y,(a,b)):y=b\}\times V=B\times V$, where $B=\{(y,(a,b)):y=b\}$. Next, $\pi_2[B]=\{((a,b),y):y=b\}$, $\pi^2_3[\pi_2[B]]=\{((b,y),a):y=b\}=I\times V$. Therefore, the classes $B$ and $A_2$ exist and the class $p_2$ exist, too.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=a\}=\{(y,((a,b),c)):y=a\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=a\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=a\}=C\times V$ where $C=\{(y,(a,b)):y=a\}$. Observe that $\pi_2[C]=\{((a,b),y):y=a\}$ and $\pi_3[\pi_2[C]]=\{((y,a),b):y=a\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ exist and so does the class $pr_1=dom[A_1\cap A_2]$.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=b\}=\{(y,((a,b),c)):y=b\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=b\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=b\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=b\}=C\times V$ where $C=\{(y,(a,b)):y=b\}$. Observe that $\pi_2[C]=\{((a,b),y):y=b\}$ and $\pi_3^2[\pi_2[C]]=\{((b,y),a):b=y\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ and finally $pr_2$ exist.

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=c\}=\{(y,((a,b),c)):y=c\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=c\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=c\}$, $\pi^2_3[\pi_2[B]]=\{((c,y),(a,b)):c=y\}=I\times (V\times V)$. Then $A_2$ and exists and so does $pr_3$.

Lemma 8. For any functions $F,G$ the class $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$ exists.

Then the classes $A_1$ and $A_2$ exist and so does the function $F\circ G$.

Proof. Observe that \begin{multline*} f=\{(a,b):a,b\in V^3,\;pr_1(a)=pr_1(b), \;pr_2(a)=pr_3(b),\;pr_3(a)=pr_2(b)\}=\\ \{x\in V^3{\times}V^3:pr_1{\circ}p_1(x)=pr_1{\circ}p_2(x),\; pr_2{\circ}p_1(x)=pr_3{\circ} p_2(x),\;pr_3{\circ} p_1(x)=pr_2{\circ} p_2(x)\}\end{multline*} and apply Lemmas 3--9.

The idea is to prove that the function $f:((x,y),z))\mapsto ((x,z),y)$ exists (as a class) and then observe that for any class $X$, the class $\{((x,y),z):((x,z),y)\in X\}$ coincides with the image $f[X]$, which is equal to $dom((f\cap (X\times V))^{-1})$ so exists by application of Axioms of Product, Intersection, Inversion, and Domain. As was observed by Emil Jeřábek in his comment, the Axiom of Intersection follows from the Axiom of Complement because $X\cap Y=X\setminus(X\setminus Y)$ for any classes $X,Y$.

Proof. By Lemma 1, the class $S=\{(x,y):x\subseteq y\}$ exists. Since $I=S\cap\pi_2[S]$ (by the Axiom of Extensionality), the class $I$ exists by the Axioms of Inversion and Intersection. $\quad\square$

The short proofs of the following two lemmas were suggested by Pace Nielsen in his comments below.

Proof. Observe that $\pi_3[p_1]=\{((a,a),b):a,b\in V\}=I\times V$, so the classes $\pi_3[p_1]$ and $p_1=\pi_3^2[\pi_3[p_1]]$ exist. $\quad\square$

Proof. Observe that $\pi^2_3[p_2]=\{((b,b),a):a,b\in V\}=I\times V$, so the class $p_2$ exists. $\quad\square$

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=a\}=\{(y,((a,b),c)):y=a\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=a\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=a\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=a\}=C\times V$ where $C=\{(y,(a,b)):y=a\}$. Observe that $\pi_2[C]=\{((a,b),y):y=a\}$ and $\pi_3[\pi_2[C]]=\{((y,a),b):y=a\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ exist and so does the class $pr_1=dom[A_1\cap A_2]$. $\quad\square$

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=b\}=\{(y,((a,b),c)):y=b\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=b\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=b\}$, $\pi_3[\pi_2[B]]=\{((y, (a,b)),c):y=b\}=C\times V$ where $C=\{(y,(a,b)):y=b\}$. Observe that $\pi_2[C]=\{((a,b),y):y=b\}$ and $\pi_3^2[\pi_2[C]]=\{((b,y),a):b=y\}=I\times V$. Therefore, the classes $C,B$ and $A_2$ and finally $pr_2$ exist. $\quad\square$

Observe that $\pi^2_3[A_2]=\{((y,((a,b),c)),x):y=c\}=\{(y,((a,b),c)):y=c\}\times V=B\times V$, where $B=\{(y,((a,b),c)):y=c\}$. Next, $\pi_2[B]=\{(((a,b),c),y):y=c\}$, $\pi^2_3[\pi_2[B]]=\{((c,y),(a,b)):c=y\}=I\times (V\times V)$. Then $A_2$ and exists and so does $pr_3$. $\quad\square$

Lemma 8. For any functions $F,G$ the class $\{x\in dom[F]\cap dom[G]:F(x)=G(x)\}=dom[F\cap G]$ exists. $\quad\square$

Then the classes $A_1$ and $A_2$ exist and so does the function $F\circ G$. $\quad\square$

Proof. Observe that \begin{multline*} f=\{(a,b):a,b\in V^3,\;pr_1(a)=pr_1(b), \;pr_2(a)=pr_3(b),\;pr_3(a)=pr_2(b)\}=\\ \{x\in V^3{\times}V^3:pr_1{\circ}p_1(x)=pr_1{\circ}p_2(x),\; pr_2{\circ}p_1(x)=pr_3{\circ} p_2(x),\;pr_3{\circ} p_1(x)=pr_2{\circ} p_2(x)\}\end{multline*} and apply Lemmas 3--9. $\quad\square$

Added the fact that the Axiom of Intersection follows from the axiom of complement.
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
Corrected Transposition' to Inversion
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
added 100 characters in body
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
added 114 characters in body
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
Added info on Godel's operations.
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
Added Axiom of Extensionality
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
deleted 2 characters in body
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading
Source Link
Taras Banakh
  • 41.1k
  • 3
  • 70
  • 177
Loading