Skip to main content

Advertisement

Log in

Feasibility of respiratory motion-compensated stereoscopic X-ray tracking for bronchoscopy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

   Precise localization in bronchoscopy is challenging, particularly for peripheral lesions that cannot be reached by conventional bronchoscopes with a large working channel. Existing navigation methods are hampered by respiratory motion, e.g., in the lower lobes. We present an image-guided approach that considers respiratory motion and can localize instruments.

Methods

   We developed a rigid chest marker containing steel balls visible in X-ray images and a pattern for passive tracking with an optical camera system. An experimental setup to evaluate stereoscopic localization and to mimic chest motion was established in our interventional suite. The marker motion was recorded, and X-ray images were acquired from different angles using a standard C-arm. All coordinates were expressed with respect to the stationary tracking camera. The feasibility of motion-compensated stereoscopic localization was assessed.

Results

   The orientation of the C-arm could be established with a mean error of less than \(1^{\circ }\). Triangulation based on two different X-ray images from different angles resulted in a mean error of 1.8 (\(\pm \)0.7) mm. A similar result was obtained when the marker was moved between X-ray acquisitions, and the mean error was 1.6 (\(\pm \)1.4) mm. The latencies were approximately 80 and 380 ms for tracking camera and X-ray imaging, respectively. Stereoscopic localization of a moving target was feasible.

Conclusions

   The system presents a flexible alternative for precise stereoscopic localization of a bronchoscope or instruments using a standard C-arm. We demonstrated the ability to track multiple moving markers and to compensate for respiratory motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rooney CP, Wolf K, McLennan G (2002) Ultrathin bronchoscopy as an adjunct to standard bronchoscopy in the diagnosis of peripheral lung lesions. Respiration 69(1):63–68

    Article  PubMed  Google Scholar 

  2. Herth F, Eberhardt R, Ernst A (2006) The future of bronchoscopy in diagnosing, staging and treatment of lung cancer. Respiration 73:399–409

    PubMed  Google Scholar 

  3. Harms W, Krempien R, Grehn C, Hensley F, Debus J, Becker HD (2006) Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors. Strahlenther Onkol 182(2):108–111

    Article  PubMed  Google Scholar 

  4. Tachihara M, Ishida T, Kanazawa K, Sugawara A, Watanabe K, Uekita K, Moriya H, Yamazaki K, Asano F, Munakata M (2007) A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions. Lung Cancer 57(3):322–327

    Article  PubMed  Google Scholar 

  5. Merritt SA, Gibbs JD, Yu K-C, Patel V, Rai L, Cornish DC, Bascom R, Higgins WE (2008) Image-guided bronchoscopy for peripheral lung lesions: a phantom study. Chest 134(5):1017–1026

    Article  PubMed  Google Scholar 

  6. Schwarz Y, Mehta AC, Ernst A, Herth F, Engel A, Besser D, Becker HD (2003) Electromagnetic navigation during flexible bronchoscopy. Respiration 70(5):516–522

    Article  PubMed  Google Scholar 

  7. Schwarz Y, Greif J, Becker HD, Ernst A, Mehta A (2006) Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129(4):988–994

    Article  PubMed  Google Scholar 

  8. Eberhardt R, Anantham D, Herth F, Feller-Kopman D, Ernst A (2007) Electromagnetic navigation diagnostic bronchoscopy in peripheral lung lesions. Chest. 131(6):1800–1805

    Article  PubMed  Google Scholar 

  9. Leong S, Ju H, Marshall H, Bowman R, Yang I, Ree AM, Saxon C, Fong KM (2012) Electromagnetic navigation bronchoscopy: a descriptive analysis. J Thorac Dis 4(2):173–185

    PubMed Central  PubMed  Google Scholar 

  10. Deguchi D, Akiyama K, Mori K, Kitasaka T, Suenaga Y, Maurer CR Jr, Takabatake H, Mori M, Natori H (2006) A method for bronchoscope tracking by combining a position sensor and image registration. Comput Aided Surg 11(3):109–117

    PubMed  Google Scholar 

  11. Ishida T, Asano F, Yamazaki K, Shinagawa N, Oizumi S, Moriya H, Munakata M, Nishimura M (2011) Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax 66(12):1072–1077

    Article  PubMed Central  PubMed  Google Scholar 

  12. Eberhardt R, Anantham D, Ernst A, Feller-Kopman D, Herth F (2007) Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. Am J Respir Crit Care Med 176(1):36–41

    Article  PubMed  Google Scholar 

  13. Gergel I, Hering J, Tetzlaff R, Meinzer HP, Wegner I (2011) An electromagnetic navigation system for transbronchial interventions with a novel approach to respiratory motion compensation. Med Phys 38(12):6742–6753

    Article  PubMed  Google Scholar 

  14. Soper TD, Haynor DR, Glenny RW, Seibel EJ (2010) In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE Trans Biomed Eng 57(3):736–745

    Article  PubMed  Google Scholar 

  15. Brost A, Liao R, Strobel N, Hornegger J (2010) Respiratory motion compensation by model-based catheter tracking during EP procedures. Med Image Anal 14(5):695–706

    Article  CAS  PubMed  Google Scholar 

  16. Binder N, Matthäus L, Burgkart R, Schweikard A (2005) A robotic C-arm fluoroscope. Int J Med Robot 1(3):108–116

    Article  CAS  PubMed  Google Scholar 

  17. Bodensteiner C, Darolti C, Schumacher H, Matthäus L, Schweikard A (2007) Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms. Med Image Comput Comput Assist Interv 10(Pt 1):177–185

    CAS  PubMed  Google Scholar 

  18. Wang L, Fallavollita P, Zou R, Chen X, Weidert S, Navab N (2012) Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application. IEEE Trans Med Imaging 31(5):1086–1099

    Article  PubMed  Google Scholar 

  19. Nozaki T, Fujiuchi Y, Komiya A, Fuse H (2012) Efficacy of DynaCT for surgical navigation during complex laparoscopic surgery: an initial experience. Surg Endosc 27(3):903–909

    Google Scholar 

  20. Navab N, Wiesner S, Benhimane S, Euler E, Heining SM (2006) Visual servoing for intraoperative positioning and repositioning of mobile C-arms. Med Image Comput Comput Assist Interv 9(Pt 1):551–560

    PubMed  Google Scholar 

  21. Rougée A, Picard C, Ponchut C, Trousset Y (1993) Geometrical calibration of x-ray imaging chains for three-dimensional reconstruction. Comput Med Imaging Graph 17(4/5):295–300

    Article  PubMed  Google Scholar 

  22. Fallavollita P, Burdette EC, Song DY, Abolmaesumi P, Fichtinger G (2011) Technical note: unsupervised C-arm pose tracking with radiographic fiducial. Med Phys 38(4):2241–2245

    Article  CAS  PubMed  Google Scholar 

  23. Jain AK, Mustafa T, Zhou Y, Burdette C, Chirikjian GS, Fichtinger G (2005) FTRAC—a robust fluoroscope tracking fiducial. Med Phys 32:3185–3198

    Article  PubMed  Google Scholar 

  24. Brost A, Strobel N, Yatziv L, Gilson W, Meyer B, Hornegger J, Lewin J, Wacker F (2009) Accuracy of X-ray image-based 3D localization from two c-arm views: a comparison between an ideal system and a real device. In: Miga MI, Wong KH (eds) Proceedings of SPIE medical imaging 2009: visualization, image-guided procedures, and modeling

  25. Chen SY, Metz CE (1997) Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees. Med Phys 24(5):633–654

    Article  CAS  PubMed  Google Scholar 

  26. Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys. 24:857–866

    Article  CAS  PubMed  Google Scholar 

  27. Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr (2010) The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat 9(5):433–452

    CAS  PubMed  Google Scholar 

  28. DeMenthon DF, Davis LS (1995) Model-based object pose in 25 lines of code. Int J Comput Vis 15:123–141

    Article  Google Scholar 

  29. Ritchie CJ, Hsieh J, Gard MF, Godwin JD, Kim Y, Crawford CR (1994) Predictive respiratory gating: a new method to reduce motion artifacts on CT scans. Radiology 190(3):847– 852

    Google Scholar 

  30. Kubo HD, Hill BC (1996) Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 41(1):83–91

    Article  CAS  PubMed  Google Scholar 

  31. Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5(4):263–277

    Article  CAS  PubMed  Google Scholar 

  32. Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14(1):91–100

    Article  PubMed  Google Scholar 

  33. Ernst F, Schlaefer A, Schweikard A (2010) Smoothing of respiratory motion traces for motion-compensated radiotherapy. Med Phys 37(1):282–294

    Article  PubMed  Google Scholar 

  34. Ernst F, Bruder R, Schlaefer A, Schweikard A (2012) Correlation between external and internal respiratory motion: a validation study. Int J Comput Assist Radiol Surg 7(3):483–492

    Article  PubMed  Google Scholar 

  35. Yan H, Yin FF, Zhu GP, Ajlouni M, Kim JH (2006) The correlation evaluation of a tumor tracking system using multiple external markers. Med Phys 33(11):4073–4084

    Article  PubMed  Google Scholar 

  36. Bradski G (2000) The OpenCV library. Dr. Dobb’s Journal of Software Tools

  37. Hartley R, Sturm P (1995) Triangulation. In: Hlaváč V, Šára R (eds) Computer analysis of images and patterns, volume 970 of Lecture Notes in computer science. Springer, Berlin, pp 190–197

  38. Maier-Hein L, Franz AM, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer HP (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39(6):3424–3434

    Article  CAS  PubMed  Google Scholar 

  39. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    Google Scholar 

  40. Fu D, Kuduvalli G, Maurer CR Jr, Allison JW, Adler JR Jr (2006) 3D target localization using 2D local displacements of skeletal structures in orthogonal x-ray images for image-guided spinal radiosurgery. Int J Comput Assist Radiol Surg 1:198–200

    Google Scholar 

  41. Fu D, Kahn R, Wang B, Wang H, Mu Z, Park J, Kuduvalli G, Maurer CR Jr (2007) Xsight lung tracking system: a fiducial-less method for respiratory motion tracking. In: Urschel HC Jr, Kresl JJ, Luketich JD, Papiez L, Timmerman RD (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 265–282

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Pedro Névoa and Julian Sulikowski for helping setup the experimental environment.

Conflict of interest

N. Leßmann, D. Drömann, and A. Schlaefer declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schlaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leßmann, N., Drömann, D. & Schlaefer, A. Feasibility of respiratory motion-compensated stereoscopic X-ray tracking for bronchoscopy. Int J CARS 9, 199–209 (2014). https://doi.org/10.1007/s11548-013-0920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0920-9

Keywords

Navigation