Skip to main content

Advertisement

Log in

CT protocols in interstitial lung diseases—A survey among members of the European Society of Thoracic Imaging and a review of the literature

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to survey the current CT protocols used by members of the European Society of Thoracic Imaging (ESTI) to evaluate patients with interstitial lung diseases (ILD).

Methods

A questionnaire was e-mailed to 173 ESTI members. The survey focussed on CT acquisition and reconstruction techniques. In particular, questions referred to the use of discontinuous HRCT or volume CT protocols, the acquisition of additional acquisitions in expiration or in the prone position, and methods of radiation dose reduction and on reconstruction algorithms.

Results

The overall response rate was 37 %. Eighty-five percent of the respondents used either volume CT alone or in combination with discontinuous HRCT. Forty-five percent of the respondents adapt their CT protocols to the patient’s weight and/or age. Expiratory CT or CT in the prone position was performed by 58 % and 59 % of the respondents, respectively. The number of reconstructed series ranged from two to eight.

Conclusion

Our survey showed that radiologists with a special interest and experience in chest radiology use a variety of CT protocols for the evaluation of ILD. There is a clear preference for volumetric scans and a strong tendency to use the 3D information.

Key Points

• Experienced thoracic radiologists use various CT protocols for evaluating interstitial lung diseases.

• Most workers prefer volumetric CT acquisitions, making use of the 3D information

• More attention to reducing the radiation dose appears to be needed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESTI:

European Society of Thoracic Imaging

HRCT:

High resolution computed tomography

References

  1. Naidich DP, Zerhouni EA, Hutchins GM et al (1985) Computed tomography of the pulmonary parenchyma. Part 1: distal air-space disease. J Thorac Imaging 1:39–53

    Article  PubMed  CAS  Google Scholar 

  2. Zerhouni EA, Naidich DP, Stitik FP et al (1985) Computed tomography of the pulmonary parenchyma. Part 2: interstitial disease. J Thorac Imaging 1:54–64

    Article  PubMed  CAS  Google Scholar 

  3. Nakata H, Kimoto T, Nakayama T et al (1985) Diffuse peripheral lung disease: evaluation by high-resolution computed tomography. Radiology 157:181–185

    PubMed  CAS  Google Scholar 

  4. Aziz ZA, Padley SP, Hansell DM (2004) CT techniques for imaging the lung: recommendations for multislice and single slice computed tomography. Eur J Radiol 52:119–136

    Article  PubMed  CAS  Google Scholar 

  5. Bendaoud S, Remy-Jardin M, Wallaert B et al (2011) Sequential versus volumetric computed tomography in the follow-up of chronic bronchopulmonary diseases: comparison of diagnostic information and radiation dose in 63 adults. J Thorac Imaging 26:190–195, 110.1097/RTI.1090b1013e3181f1093a1030e

    Article  PubMed  Google Scholar 

  6. Lucidarme O, Grenier P, Coche E et al (1996) Bronchiectasis: comparative assessment with thin-section CT and helical CT. Radiology 200:673–679

    PubMed  CAS  Google Scholar 

  7. Hill LE, Ritchie G, Wightman AJ et al (2010) Comparison between conventional interrupted high-resolution CT and volume multidetector CT acquisition in the assessment of bronchiectasis. Br J Radiol 83:67–70

    Article  PubMed  CAS  Google Scholar 

  8. Verschakelen JA (2010) The role of high-resolution computed tomography in the work-up of interstitial lung disease. Curr Opin Pulm Med 16:503–510

    Article  PubMed  Google Scholar 

  9. Sundaram B, Chughtai AR, Kazerooni EA (2010) Multidetector high-resolution computed tomography of the lungs: protocols and applications. J Thorac Imaging 25:125–141

    Article  PubMed  Google Scholar 

  10. Dodd JD, De Jong PA, Rd L et al (2008) Conventional high-resolution CT versus contiguous multidetector CT in the detection of bronchiolitis obliterans syndrome in lung transplant recipients. J Thorac Imaging 23:235–243

    Article  PubMed  Google Scholar 

  11. Studler U, Gluecker T, Bongartz G et al (2005) Image quality from high-resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT. AJR Am J Roentgenol 185:602–607

    Article  PubMed  Google Scholar 

  12. Arakawa H, Sasaka K, Lu WM et al (2004) Comparison of axial high-resolution CT and thin-section multiplanar reformation (MPR) for diagnosis of diseases of the pulmonary parenchyma: preliminary study in 49 patients. J Thorac Imaging 19:24–31

    Article  PubMed  Google Scholar 

  13. Rydberg J, Sandrasegaran K, Tarver RD et al (2007) Routine isotropic computed tomography scanning of chest: value of coronal and sagittal reformations. Invest Radiol 42:23–28

    Article  PubMed  Google Scholar 

  14. Engelke C, Schaefer-Prokop C, Schirg E et al (2002) High-resolution CT and CT angiography of peripheral pulmonary vascular disorders. Radiographics 22:739–764

    PubMed  Google Scholar 

  15. Remy-Jardin M, Remy J, Artaud D et al (1996) Diffuse infiltrative lung disease: clinical value of sliding-thin-slab maximum intensity projection CT scans in the detection of mild micronodular patterns. Radiology 200:333–339

    PubMed  CAS  Google Scholar 

  16. Bhalla M, Naidich DP, Mcguinness G et al (1996) Diffuse lung disease: assessment with helical CT–preliminary observations of the role of maximum and minimum intensity projection images. Radiology 200:341–347

    PubMed  CAS  Google Scholar 

  17. Remy-Jardin M, Remy J, Gosselin B et al (1996) Sliding thin slab, minimum intensity projection technique in the diagnosis of emphysema: histopathologic-CT correlation. Radiology 200:665–671

    PubMed  CAS  Google Scholar 

  18. Zwirewich CV, Mayo JR, Muller NL (1991) Low-dose high-resolution CT of lung parenchyma. Radiology 180:413–417

    PubMed  CAS  Google Scholar 

  19. Lee KS, Primack SL, Staples CA et al (1994) Chronic infiltrative lung disease: comparison of diagnostic accuracies of radiography and low- and conventional-dose thin-section CT. Radiology 191:669–673

    PubMed  CAS  Google Scholar 

  20. Swensen SJ (2002) CT screening for lung cancer. AJR Am J Roentgenol 179:833–836

    Article  PubMed  Google Scholar 

  21. Naidich DP, Marshall CH, Gribbin C et al (1990) Low-dose CT of the lungs: preliminary observations. Radiology 175:729–731

    PubMed  CAS  Google Scholar 

  22. Kalender WA, Wolf H, Suess C et al (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328

    Article  PubMed  CAS  Google Scholar 

  23. Baumueller S, Winklehner A, Karlo C et al (2012) Low-dose CT of the lung: potential value of iterative reconstructions. Eur Radiol

  24. Pontana F, Duhamel A, Pagniez J et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21:636–643

    Article  PubMed  Google Scholar 

  25. Prakash P, Kalra MK, Ackman JB et al (2010) Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 256:261–269

    Article  PubMed  Google Scholar 

  26. Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573

    Article  PubMed  Google Scholar 

  27. Mayo JR (2009) CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique. J Thorac Imaging 24:252–259

    Article  PubMed  Google Scholar 

  28. Vikgren J, Johnsson ÅA, Flinck A et al (2008) High-resolution computed tomography with 16-row mdct: a comparison regarding visibility and motion artifacts of dose-modulated thin slices and “step and shoot” images. Acta Radiologica 49:755–760

    Article  PubMed  CAS  Google Scholar 

  29. Arakawa H, Niimi H, Kurihara Y et al (2000) Expiratory high-resolution CT: diagnostic value in diffuse lung diseases. AJR Am J Roentgenol 175:1537–1543

    Article  PubMed  CAS  Google Scholar 

  30. Wells AU, Hirani N (2008) Interstitial lung disease guideline. Thorax 63:v1–v58

    Article  PubMed  Google Scholar 

  31. Nishino M, Boiselle PM, Copeland JF et al (2004) Value of volumetric data acquisition in expiratory high-resolution computed tomography of the lung. J Comput Assist Tomogr 28:209–214

    Article  PubMed  Google Scholar 

  32. Akira M, Toyokawa K, Inoue Y et al (2009) Quantitative CT in chronic obstructive pulmonary disease: inspiratory and expiratory assessment. AJR Am J Roentgenol 192:267–272

    Article  PubMed  Google Scholar 

  33. Nishino M, Washko GR, Hatabu H (2010) Volumetric expiratory HRCT of the lung: clinical applications. Radiol Clin N Am 48:177–183

    Article  PubMed  Google Scholar 

  34. Busacker A, Newell JD, Keefe T et al (2009) A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest 135:48–56

    Article  PubMed  Google Scholar 

  35. Matsuoka S, Kurihara Y, Yagihashi K et al (2008) Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 190:762–769

    Article  PubMed  Google Scholar 

  36. Nishino M, Hatabu H (2004) Volumetric expiratory high-resolution CT of the lung. Eur J Radiol 52:180–184

    Article  PubMed  Google Scholar 

  37. Eisenberg RL, Bankier AA, Boiselle PM (2010) Compliance with Fleischner Society guidelines for management of small lung nodules: a survey of 834 radiologists. Radiology 255:218–224

    Article  PubMed  Google Scholar 

  38. Munden RF, Hess KR (2001) "Ditzels" on chest CT: survey of members of the Society of Thoracic Radiology. AJR Am J Roentgenol 176:1363–1369

    Article  PubMed  CAS  Google Scholar 

  39. Stern EJ, Frank MS, Godwin JD (1995) Chest computed tomography display preferences. Survey of thoracic radiologists. Invest Radiol 30:517–521

    Article  PubMed  CAS  Google Scholar 

  40. Gruden JF, Ouanounou S, Tigges S et al (2002) Incremental benefit of maximum-intensity-projection images on observer detection of small pulmonary nodules revealed by multidetector CT. AJR Am J Roentgenol 179:149–157

    Article  PubMed  Google Scholar 

  41. Remy-Jardin M, Campistron P, Amara A et al (2003) Usefulness of coronal reformations in the diagnostic evaluation of infiltrative lung disease. J Comput Assist Tomogr 27:266–273

    Article  PubMed  Google Scholar 

  42. Sakai M, Murayama S, Gibo M et al (2005) Can maximum intensity projection images with multidetector-row computed tomography help to differentiate between the micronodular distribution of focal and diffuse infiltrative lung diseases? J Comput Assist Tomogr 29:588–591

    Article  PubMed  Google Scholar 

  43. Kwan SW, Partik BL, Zinck SE et al (2005) Primary interpretation of thoracic MDCT images using coronal reformations. AJR Am J Roentgenol 185:1500–1508

    Article  PubMed  Google Scholar 

  44. Valencia R, Denecke T, Lehmkuhl L et al (2006) Value of axial and coronal maximum intensity projection (MIP) images in the detection of pulmonary nodules by multislice spiral CT: comparison with axial 1-mm and 5-mm slices. Eur Radiol 16:325–332

    Article  PubMed  Google Scholar 

  45. Kawel N, Seifert B, Luetolf M et al (2009) Effect of slab thickness on the CT detection of pulmonary nodules: use of sliding thin-slab maximum intensity projection and volume rendering. Am J Roentgenol 192:1324–1329

    Article  Google Scholar 

  46. Yi CA, Lee KS, Kim TS et al (2003) Multidetector CT of bronchiectasis: effect of radiation dose on image quality. AJR Am J Roentgenol 181:501–505

    Article  PubMed  Google Scholar 

  47. Mayo JR, Kim KI, Macdonald SLS et al (2004) Reduced radiation dose helical chest CT: effect on reader evaluation of structures and lung findings. Radiology 232:749–756

    Article  PubMed  Google Scholar 

  48. Das M, Mahnken AH, Mühlenbruch G et al (2005) Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. AJR Am J Roentgenol 184:1437–1443

    Article  PubMed  Google Scholar 

  49. Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242:898–906

    Article  PubMed  Google Scholar 

  50. Ley-Zaporozhan J, Ley S, Krummenauer F et al (2010) Low dose multi-detector CT of the chest (iLEAD Study): visual ranking of different simulated mAs levels. Eur J Radiol 73:428–433

    Article  PubMed  Google Scholar 

  51. Christe A, Lin Mc, Yen Ac et al (2011) CT patterns of fungal pulmonary infections of the lung: Comparison of standard-dose and simulated low-dose CT. Eur J Radiol

Download references

Acknowledgments

The authors are indebted to the board of the European Society of Thoracic Imaging for supporting this study and to the respondents for contributing to this study. We are grateful to Prof. Mathias Prokop (UMC Utrecht, The Netherlands) for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Prosch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

(PDF 250 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prosch, H., Schaefer-Prokop, C.M., Eisenhuber, E. et al. CT protocols in interstitial lung diseases—A survey among members of the European Society of Thoracic Imaging and a review of the literature. Eur Radiol 23, 1553–1563 (2013). https://doi.org/10.1007/s00330-012-2733-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2733-6

Keywords

Navigation