Skip to main content
Log in

Abwägen von Dosisbedarf und Bildqualität in der digitalen Radiographie

Balance of required dose and image quality in digital radiography

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Projektionsradiographie befindet sich in einer bereits weit fortgeschrittenen Umbruchphase zwischen konventionellen Film-Folien-Systemen und digitalen Verfahren. Die radiographische Technik einschließlich der Expositionsparameter wurde vielerorts einfach von Film-Folien-Systemen übernommen. Digitale Systeme sind sehr flexibel, die Dosis kann auf Kosten der Bildqualität gesenkt werden. Die Aufnahmetechnik muss für jedes System optimiert werden. Die Strahlenschutzgrundsätze der Einstelltechnik wie Kollimation und Positionierung sind für konventionelle und digitale Verfahren in gleicher Weise gültig. Die digitale Technik bietet viele Möglichkeiten zur Dosisreduktion, gleichzeitig besteht die Gefahr eines unbemerkten Dosisanstiegs wegen der fehlenden optischen Kontrolle. Daher sind die Anwendung von Dosisindikatoren und eine longitudinale Dosisüberwachung unerlässlich. Die Einführung von Bildqualitätsklassen zur indikationsabhängigen Dosisgestaltung von Untersuchungen ist ein weiterer Fortschritt für den Strahlenschutz.

Abstract

Projection radiography is in an advanced stage of progressive transition from conventional screen-film imaging to digital image acquisition modalities. The radiographic technique, including examination parameters such as tube voltage, tube current and filtration has frequently been adopted from screen-film technology. Digital systems, however, are characterized by their flexibility as the dose can be reduced at the expense of image quality and vice versa. The imaging parameters need to be individually optimized according to the best performance of a system. The traditional means of dose adjustment, such as positioning and collimation, are as valid for digital techniques as they were for conventional techniques. Digital techniques increasingly offer options for dose reduction. At the same time there is a risk to accidentally substantially increase patient dose due to the lack of visual control. Therefore, the implementation of dose indicators and dose monitoring is mandatory for digital radiography. The use of image quality classes according to the dose requirements of given clinical indications are a further step towards modern radiation protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. International Commission on Radiological Protection (1992) 1990 Recommendation of the International Commission on Radiological Protection – users‘ edition. ICRP Publication 60. Pergamon Press, Oxford. ISBN 0-08-041998-041994

  2. EURATOM (1997) Council directive 97/43/Euratom of 30 Juni 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure. Off J Eur Commun (L180): 122–127

    Google Scholar 

  3. Annals of the ICRP (2004) Managing patient dose in digital radiology. ICRP Publication 93. Elsevier, London

  4. Busch HP, Busch S, Decker C, Schilz C (2003) [Image quality and exposure dose in digital projection radiography]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175: 32–37

    Article  PubMed  CAS  Google Scholar 

  5. Busch HP, Faulkner K (2005) Image quality and dose management in digital radiography: a new paradigm for optimisation. Radiat Prot Dosimetry 117: 143–147

    Article  PubMed  CAS  Google Scholar 

  6. Dobbins JT III, Samei E, Chotas HG et al. (2003) Chest radiography: optimization of X-ray spectrum for cesium iodide-amorphous silicon flat-panel detector. Radiology 226: 221–230

    Article  PubMed  Google Scholar 

  7. Fasbender R, Schaetzing R (2003) [New computed radiography technologies in digital radiography]. Radiologe 43: 367–373

    Article  PubMed  CAS  Google Scholar 

  8. Hamer OW, Volk M, Zorger N et al. (2004) Contrast-detail phantom study for X-ray spectrum optimization regarding chest radiography using a cesium iodide-amorphous silicon flat-panel detector. Invest Radiol 39: 610–618

    Article  PubMed  Google Scholar 

  9. Honey ID, Mackenzie A, Evans DS (2005) Investigation of optimum energies for chest imaging using film-screen and computed radiography. Br J Radiol 78: 422–427

    Article  PubMed  CAS  Google Scholar 

  10. Huda W (2005) The current concept of speed should not be used to describe digital imaging systems. Radiology 234: 345–346

    Article  PubMed  Google Scholar 

  11. Korner M, Wirth S, Treitl M et al. (2005) Initial clinical results with a new needle screen storage phosphor system in chest radiograms. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 177: 1491–1496

    Article  PubMed  CAS  Google Scholar 

  12. Launders J, Cowen A, Bury R, Hawkridge P (2001) Towards image quality, beam energy and effective dose optimisation in digital thoracic radiography. Eur Radiol 11: 870–875

    Article  PubMed  CAS  Google Scholar 

  13. Loose R, Wucherer M (2007) [Occupational exposure to radiation.]. Radiologe 47: S27–S40

    Article  PubMed  CAS  Google Scholar 

  14. Monnin P, Holzer Z, Wolf R et al. (2006) Influence of cassette type on the DQE of CR systems. Med Phys 33: 3637–3639

    Article  PubMed  CAS  Google Scholar 

  15. Riccardi L, Cauzzo MC, Fabbris R et al. (2007) Comparison between a built-in „dual side“ chest imaging device and a standard „single side“ CR. Med Phys 34: 119–126

    Article  PubMed  Google Scholar 

  16. Samei E, Dobbins JT 3rd, Lo JY, Tornai MP (2005) A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosimetry 114: 220–229

    Article  PubMed  Google Scholar 

  17. Samei E, Flynn MJ (2003) An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 30: 608–622

    Article  PubMed  Google Scholar 

  18. Schaetzing R (2003) Computed radiography technology. In: Samei E, Durham NC (eds) Advances in digital radiography: RSNA categorial course in diagnostic radiology physics. Radiological Society of North America, Inc., Oak Brook, pp 7–22

  19. Schatzl M, Braunschweig R, Hoppe T et al. (2005) [Comments on the standards for acceptance and consistency testing of systems for digital radiography]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 177: 1297–1304

    Article  PubMed  CAS  Google Scholar 

  20. Seibert JA (2004) Tradeoffs between image quality and dose. Pediatr Radiol 34 [suppl 3]: S183–S195; discussion S234–S241

  21. Uffmann M, Neitzel U, Prokop M et al. (2005) Flat-panel-detector chest radiography: effect of tube voltage on image quality. Radiology 235: 642–650

    Article  PubMed  Google Scholar 

  22. Weatherburn GC, Bryan S, Davies JG (2000) Comparison of doses for bedside examinations of the chest with conventional screen-film and computed radiography: results of a randomized controlled trial. Radiology 217: 707–712

    PubMed  CAS  Google Scholar 

  23. Willis CE (2002) Computed radiography: a higher dose? Pediatr Radiol 32: 745–750; discussion 751–754

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angabe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Uffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uffmann, M., Schaefer-Prokop, C. & Neitzel, U. Abwägen von Dosisbedarf und Bildqualität in der digitalen Radiographie. Radiologe 48, 249–257 (2008). https://doi.org/10.1007/s00117-008-1617-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-008-1617-x

Schlüsselwörter

Keywords

Navigation