Skip to main content

Uncertainty Quantification and Estimation in Medical Image Classification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

Deep Neural Networks (DNNs) have shown tremendous success in numerous AI-related fields. However, despite DNNs exhibiting remarkable performance, they still can make mistakes. Therefore, estimation and quantification of uncertainty have become an essential parameter in Deep Learning practical applications, especially in medical imaging. Measuring uncertainty can help with better decision making, early diagnosis, and a variety of tasks. In this paper, we explore uncertainty quantification (UQ) approaches and propose an uncertainty quantification (UQ) system for general medical imaging classification tasks. For its practical use, we adapt our UQ system for the problem of medical pre-screening, where patients are referred to a medical specialist if the DNN model classification or diagnosis is too uncertain. In experiments, we apply the UQ system to two medical imaging databases, a SARS-CoV2 CT dataset and the BreaKHis dataset. We show how to capture the most uncertain samples and predict the most uncertain category. For the application of medical pre-screening, we demonstrate that we can obtain more accurate results than initial modeling results by removing a percentage of the most uncertain input data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alom, M.Z., Yakopcic, C., Taha, T.M., Asari, V.K.: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. arXiv preprint arXiv: 1811.04241 (2018)

  2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv: 1606.06565 (2016)

  3. Bardou, D., Zhang, K., Ahmad, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018). https://doi.org/10.1109/ACCESS.2018.2831280

    Article  Google Scholar 

  4. Begoli, E., Bhattacharya, T., Kusnezov, D.F.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1(1), 20–23 (2019). https://doi.org/10.1038/s42256-018-0004-1

    Article  Google Scholar 

  5. Boumaraf, S., Liu, X., Zheng, Z., Ma, X., Ferkous, C.: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images. Biomed. Signal Process. Control 63, 102192 (2021). https://doi.org/10.1016/j.bspc.2020.102192

    Article  Google Scholar 

  6. Erfankhah, H., Yazdi, M., Babaie, M., Tizhoosh, H.R.: Heterogeneity-aware local binary patterns for retrieval of histopathology images. IEEE Access 7, 18354–18367 (2019). https://doi.org/10.1109/ACCESS.2019.2897281

    Article  Google Scholar 

  7. Filos, A., et al.: A systematic comparison of Bayesian deep learning robustness in diabetic retinopathy tasks. arXiv preprint arXiv:1912.10481 (2019)

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, ICML 2016, vol. 48, pp. 1050–1059. JMLR.org (2016)

    Google Scholar 

  9. Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., Li, S.: Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 7, 1–10 (2017). https://doi.org/10.1038/s41598-017-04075-z

    Article  Google Scholar 

  10. Jiang, Y., Chen, L., Zhang, H., Xiao, X.: Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLOS ONE 14(3), 1–21 (2019). https://doi.org/10.1371/journal.pone.0214587

    Article  Google Scholar 

  11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles (2017)

    Google Scholar 

  12. Mayo Clinic Staff: Coronavirus disease 2019 (covid-19) (September 2020). https://www.mayoclinic.org/diseases-conditions/coronavirus/symptoms-causes/syc-20479963. Accessed 25 Oct 2020

  13. Nokelainen, P., Nevalainen, T., Niemi, K.: Mind or machine? Opportunities and limits of automation. In: Harteis, C. (ed.) The Impact of Digitalization in the Workplace. PPL, vol. 21, pp. 13–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63257-5_2

    Chapter  Google Scholar 

  14. Satpute, A.: BreakHist-dataset-image-classification. GitHub repository (2020). https://github.com/Anki0909/BreakHist-Dataset-Image-Classification. Accessed 15 Sep 2020

  15. Smith, L., Gal, Y.: Understanding measures of uncertainty for adversarial example detection. arXiv preprint arXiv: 1803.08533 (2018)

  16. Soares, E., Angelov, P., Biaso, S., Higa Froes, M., Kanda Abe, D.: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification. medRxiv (2020). https://doi.org/10.1101/2020.04.24.20078584

  17. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. (TBME) 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  18. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567 (2016). https://doi.org/10.1109/IJCNN.2016.7727519

  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Tang, B., Pan, Z., Yin, K., Khateeb, A.: Recent advances of deep learning in bioinformatics and computational biology. Front. Genet. 10, 214 (2019). https://doi.org/10.3389/fgene.2019.00214

    Article  Google Scholar 

  21. Uçar, A., Demir, Y., Güzeliş, C.: Object recognition and detection with deep learning for autonomous driving applications. SIMULATION 93(9), 759–769 (2017). https://doi.org/10.1177/0037549717709932

  22. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018). https://doi.org/10.1109/MCI.2018.2840738

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Fevens, T. (2021). Uncertainty Quantification and Estimation in Medical Image Classification. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12893. Springer, Cham. https://doi.org/10.1007/978-3-030-86365-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86365-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86364-7

  • Online ISBN: 978-3-030-86365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics