Skip to main content
Post Reopened by Kevin Cruijssen, jimmy23013, mbomb007, Nitrodon, Giuseppe
added 342 characters in body
Source Link
Giuseppe
  • 28.7k
  • 3
  • 31
  • 104

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is code-golf, so the shortest correct program wins.

The convex hull of a set of points \$P\$ is the smallest convex set that contains \$P\$. On the Euclidean plane, for any single point \$(x,y)\$, it is the point itself; for two distinct points, it is the line containing them, for three non-collinear points, it is the triangle that they form, and so forth.

A very briefgood visual explanation of what a convex hulls is, is best described byas imagining all the points as nails in a wooden undergroundboard, and puttingthen stretching a rubber band around itthem to enclose all the points:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is code-golf, so the shortest correct program wins.

A very brief explanation of what a convex hulls is, is best described by imagining all the points as nails in a wooden underground, and putting a rubber band around it:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is , so the shortest correct program wins.

The convex hull of a set of points \$P\$ is the smallest convex set that contains \$P\$. On the Euclidean plane, for any single point \$(x,y)\$, it is the point itself; for two distinct points, it is the line containing them, for three non-collinear points, it is the triangle that they form, and so forth.

A good visual explanation of what a convex hulls, is best described as imagining all points as nails in a wooden board, and then stretching a rubber band around them to enclose all the points:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905
deleted 61 characters in body
Source Link
mbomb007
  • 23.4k
  • 7
  • 63
  • 135

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is code-golf, so the shortest correct program (ignoring non-significant whitespace, newlines and comments) wins.

A very brief explanation of what a convex hulls is, is best described by imagining all the points as nails in a wooden underground, and putting a rubber band around it:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is code-golf, so the shortest correct program (ignoring non-significant whitespace, newlines and comments) wins.

A very brief explanation of what a convex hulls is, is best described by imagining all the points as nails in a wooden underground, and putting a rubber band around it:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is code-golf, so the shortest correct program wins.

A very brief explanation of what a convex hulls is, is best described by imagining all the points as nails in a wooden underground, and putting a rubber band around it:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905
Added wikipedia link to Convex Hull as well as a very brief explanation of what it is, so this can be re-opened
Source Link
Kevin Cruijssen
  • 128.3k
  • 12
  • 141
  • 381

You are given an array/list/vector of pairs of integers representing cartesian coordinates (x, y)\$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between −104\$−10^4\$ and 104\$10^4\$, duplicates are allowed. Find the area of the convex hullconvex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is a code-golf, so the shortest correct program (ignoring non-significant whitespace, newlines and comments) wins.

A very brief explanation of what a convex hulls is, is best described by imagining all the points as nails in a wooden underground, and putting a rubber band around it:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905

You are given an array/list/vector of pairs of integers representing cartesian coordinates (x, y) of points on a 2D Euclidean plane; all coordinates are between −104 and 104, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is a code-golf, the shortest correct program (ignoring non-significant whitespace, newlines and comments) wins.

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905

You are given an array/list/vector of pairs of integers representing cartesian coordinates \$(x, y)\$ of points on a 2D Euclidean plane; all coordinates are between \$−10^4\$ and \$10^4\$, duplicates are allowed. Find the area of the convex hull of those points, rounded to the nearest integer; an exact midpoint should be rounded to the closest even integer. You may use floating-point numbers in intermediate computations, but only if you can guarantee that the final result will be always correct. This is code-golf, so the shortest correct program (ignoring non-significant whitespace, newlines and comments) wins.

A very brief explanation of what a convex hulls is, is best described by imagining all the points as nails in a wooden underground, and putting a rubber band around it:
enter image description here

Some test cases:

Input: [[50, -13]]
Result: 0

Input: [[-25, -26], [34, -27]]
Result: 0

Input: [[-6, -14], [-48, -45], [21, 25]]
Result: 400

Input: [[4, 30], [5, 37], [-18, 49], [-9, -2]]
Result: 562

Input: [[0, 16], [24, 18], [-43, 36], [39, -29], [3, -38]]
Result: 2978

Input: [[19, -19], [15, 5], [-16, -41], [6, -25], [-42, 1], [12, 19]]
Result: 2118

Input: [[-23, 13], [-13, 13], [-6, -7], [22, 41], [-26, 50], [12, -12], [-23, -7]]
Result: 2307

Input: [[31, -19], [-41, -41], [25, 34], [29, -1], [42, -42], [-34, 32], [19, 33], [40, 39]]
Result: 6037

Input: [[47, 1], [-22, 24], [36, 38], [-17, 4], [41, -3], [-13, 15], [-36, -40], [-13, 35], [-25, 22]]
Result: 3908

Input: [[29, -19], [18, 9], [30, -46], [15, 20], [24, -4], [5, 19], [-44, 4], [-20, -8], [-16, 34], [17, -36]]
Result: 2905
Post Closed as "Needs details or clarity" by Shaggy, Keeta - reinstate Monica, Wheat Wizard, Chris, Alex A.
Became Hot Network Question
added 16 characters in body
Source Link
Loading
added 959 characters in body
Source Link
Loading
to fit result into int32
Source Link
Loading
added 1 character in body
Source Link
Gymhgy
  • 8k
  • 10
  • 35
Loading
Source Link
Loading