Skip to main content
Improved Formatting
Source Link

Assuming Equal volumes and Equalequal volume $V$, equal temperature $T$, and equal pressure conditions.We $p$, we can apply AvogadroAvogadro's Law: An equal volume of two gasses contain an equal number of molecules at the same temperature and pressure.

ie. equal volume of gasses contain equal number of moles at same temperature and pressure.

Now, you can proceed .:

Thus. $$\rho=Mass/Volume=\frac{n\times M_{molar mass}}{volume}$$. ==>$\rho1/\rho2=M1/M2$ $==>M_{gas}=10\times M_{H_2}$

\begin{align} \rho &= \frac{\text{Mass}}{\text{Volume}}\\ &= \frac{n\times M (\text{molar mass})}{\text{Volume}}\\ \implies\frac{\rho_1}{\rho_2}&=\frac{M_1}{M_2}\\ \implies M_{\ce{X}}&=10\times M_{\ce{H2}} \end{align}

Assuming Equal volumes and Equal temperature , pressure conditions.We can apply Avogadro Law.

ie. equal volume of gasses contain equal number of moles at same temperature and pressure.

Now, you can proceed .

Thus. $$\rho=Mass/Volume=\frac{n\times M_{molar mass}}{volume}$$. ==>$\rho1/\rho2=M1/M2$ $==>M_{gas}=10\times M_{H_2}$

Assuming equal volume $V$, equal temperature $T$, and equal pressure conditions $p$, we can apply Avogadro's Law: An equal volume of two gasses contain an equal number of molecules at the same temperature and pressure.

Now, you can proceed:

\begin{align} \rho &= \frac{\text{Mass}}{\text{Volume}}\\ &= \frac{n\times M (\text{molar mass})}{\text{Volume}}\\ \implies\frac{\rho_1}{\rho_2}&=\frac{M_1}{M_2}\\ \implies M_{\ce{X}}&=10\times M_{\ce{H2}} \end{align}

Source Link
user1395
user1395

Assuming Equal volumes and Equal temperature , pressure conditions.We can apply Avogadro Law.

ie. equal volume of gasses contain equal number of moles at same temperature and pressure.

Now, you can proceed .

Thus. $$\rho=Mass/Volume=\frac{n\times M_{molar mass}}{volume}$$. ==>$\rho1/\rho2=M1/M2$ $==>M_{gas}=10\times M_{H_2}$