Skip to main content
added 112 characters in body
Source Link
Poutnik
  • 42.7k
  • 3
  • 50
  • 108

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The $\mathrm{p}K_\mathrm{a} = 5.23$ for phosphoric acid is nonsense; the task is made up. Additionally, the above provided formulat is not applicable on salts of multiprotic acids like $\ce{(NH4)3PO4}$

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^{2.05})x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 \approx 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The $\mathrm{p}K_\mathrm{a} = 5.23$ for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^{2.05})x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 \approx 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The $\mathrm{p}K_\mathrm{a} = 5.23$ for phosphoric acid is nonsense; the task is made up. Additionally, the above provided formulat is not applicable on salts of multiprotic acids like $\ce{(NH4)3PO4}$

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^{2.05})x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 \approx 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

added 118 characters in body
Source Link
Poutnik
  • 42.7k
  • 3
  • 50
  • 108

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The pKa = 5.23$\mathrm{p}K_\mathrm{a} = 5.23$ for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^A)x - 6 = 0$$$$(10^{2.05}-1)x^2 + (5 -10^{2.05})x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 = 0$$$$111.2 \cdot x^2 - 107.2x - 6 \approx 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The pKa = 5.23 for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 = 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The $\mathrm{p}K_\mathrm{a} = 5.23$ for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^{2.05})x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 \approx 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

Post Undeleted by Poutnik
added 118 characters in body
Source Link
Poutnik
  • 42.7k
  • 3
  • 50
  • 108

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The pKa = 5.23 for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + x HPO4^2- + (1-x) PO4^3-}$$$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a,HPO4^2-} + \log {\left(\frac{1-x}{x}\right)} $$$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a,HPO4^2-} = \log {\left(\frac{1-x}{x}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(1-x)(3-x)}{x^2}\right)}$$$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a,HPO4^2-}= -3.12$$A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x^2 = 3 - 4x + x^2 $$$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$0 = 3 - 4x + x^2(1 - 10^{A}) $$$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

As $10^{-3.12} \ll 1$:$$(10^{2.05}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$3 - 4x + x^2 \approx 0$$$$111.2 \cdot x^2 - 107.2x - 6 = 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The pKa = 5.23 for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + x HPO4^2- + (1-x) PO4^3-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a,HPO4^2-} + \log {\left(\frac{1-x}{x}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a,HPO4^2-} = \log {\left(\frac{1-x}{x}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(1-x)(3-x)}{x^2}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a,HPO4^2-}= -3.12$

$$10^{A} \cdot x^2 = 3 - 4x + x^2 $$

$$0 = 3 - 4x + x^2(1 - 10^{A}) $$

As $10^{-3.12} \ll 1$:

$$3 - 4x + x^2 \approx 0$$

$\ce{NH4OH}$ assumes $\ce{N}$ is able to form 5 bonds. It is not.

The pKa = 5.23 for phosphoric acid is nonsense; the task is made up.

The respective $\mathrm{p}K_\mathrm{a}$ for each of $\ce{H3PO4}$ hydrogen are $\mathrm{p}K_\mathrm{a1}=2.14$, $\mathrm{p}K_\mathrm{a2}=7.20$ and $\mathrm{p}K_\mathrm{a3}=12.37$.
It is possible to have a combined $\mathrm{p}K_\text{a,tot}$ directly for $\ce{H3PO4 \to PO4^3-}$, but it would be their sum, 21.73.

The task can be simplified to ( informed guess assuming $1 \lt x \lt 2$):

$$\ce{3 NH4+ + PO4^3- -> (3-x) NH4+ + x NH3 + (2-x) HPO4^2- + (x-1)H2PO4-}$$

and

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{x}{3-x} \right)} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-x}{x-1}\right)} $$

$$\mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4} = \log {\left(\frac{2-x}{x-1}\right)} - \log {\left(\frac{x}{3-x} \right)}=\log{\left(\frac {(2-x)(3-x)}{(x-1)x}\right)}$$

Let substitute $A = \mathrm{p}K_\ce{a,NH4+} - \mathrm{p}K_\ce{a2,H3PO4}= +2.05$

$$10^{A} \cdot x(x-1) = 6-5x+x^2$$

$$(10^{A}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$(10^{2.05}-1)x^2 + (5 -10^A)x - 6 = 0$$

$$111.2 \cdot x^2 - 107.2x - 6 = 0$$

$$x \approx 1.01708$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a,NH4+} + \log {\left(\frac{1.01708}{3-1.01708} \right)} \approx 9.25 - 0.30 = 8.95$$

$$\mathrm{pH} \approx \mathrm{p}K_\ce{a2,H3PO4} + \log {\left(\frac{2-1.01708}{1.01708 - 1} \right)} \approx 7.20 + 1.76 = 8.96$$

added 118 characters in body
Source Link
Poutnik
  • 42.7k
  • 3
  • 50
  • 108
Loading
Post Deleted by Poutnik
Source Link
Poutnik
  • 42.7k
  • 3
  • 50
  • 108
Loading