Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun;47(6):1167-82.
doi: 10.1007/s00726-015-1944-y. Epub 2015 Feb 27.

Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy

Affiliations

Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy

S Hallaj Neishabouri et al. Amino Acids. 2015 Jun.

Abstract

The mitochondrial branched chain aminotransferase-deficient mouse model (BCATm KO), which exhibits elevated plasma and tissue branched chain amino acids (BCAAs), was used to study the effect of BCAAs on mammalian target of rapamycin complex 1 (mTORC1) regulation of organ size. BCATm is the first enzyme in the BCAA catabolic pathway. BCATm KO mouse exhibited hypertrophy of heart, kidneys, and spleen. On the other hand, the mass of the gastrocnemius was reduced relative to body mass. Feeding the mice with a diet supplemented with rapamycin prevented the enlargement of the heart and spleen, suggesting that mTORC1 is the mediator of these effects. Consistently, enlargement of these organs was accompanied by the activation of mTORC1 complex as evidenced by enhanced levels of S6 and 4E-BP1 phosphorylation. HSP20, HSP27 and GAPDH were also increased in the heart but not gastrocnemius, consistent with mTORC1 activation. Liver, however, displayed no weight difference between the KO and the wild-type mice despite the highest activation level of mTORC1 complex. These observations suggest that the anabolic effect of mTORC1 activation at the organ level by BCAAs and inhibition by rapamycin are complex phenomenon and tissue-specific. In addition, it suggests that rapamycin can be used to counter hypertrophy of the organs when activation of mTORC1 is the underlying cause.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources